Concentrations of Radionuclides in Fish Collected from Bikini Atoll Between 1977 and 1984 > V.E. Noshkin K.M. Wong R.J. Eagle T.A. Jokela J.A. Brunk # CONCENTRATIONS OF RADIONUCLIDES IN FISH COLLECTED FROM BIKINI ATOLL BETWEEN 1977 AND 1984 V.E. Noshkin K.M. Wong R.J. Eagle T.A. Jokela J.A. Brunk July, 1986 # TABLE OF CONTENTS | Abstract | 1 | |---|----------------------------| | Introduction | 2 | | Collection Methods | 7 | | Species Collected, Feeding Habits, And Trophic-Level Relationships | 7 | | Sample Processing And Analysis | 8 | | Results And Discussion | 13 | | 137 _{Cs} 90 _{Sr} 60 _{Co} 207 _{Bi} Other Radionuclides | 13
18
18
20
23 | | Summary | 24 | | Acknowledgment | 24 | | References | 25 | | Appendix | 28 | ## **ABSTRACT** This report is prepared to have, in one document, a summary of all available data on the concentrations of radionuclides in samples of fish that were collected for our analysis from Bikini Atoll between 1977 and 1984. Some results have been presented in other published reports, and more detailed discussions of previously unpublished results are planned for future publications. Therefore, only a brief discussion of some results are provided herein. As found in other global studies, ¹³⁷Cs is most highly accumulated in edible flesh of all species of fish, the lowest fractions are found in the bone or liver. The mean concentration of $^{137}\mathrm{Cs}$ in muscle of reef fish from the southern part of the atoll is comparable to the global fallout concentration measured in market samples of fish collected from Chicago, Il., U.S.A., in 1982. ⁹⁰Sr is generally associated with non-edible parts of fish, such as bone or viscera. Twenty-five to fifty percent of the total body burden of ⁶⁰Co is accumulated in the muscle tissue; the remainder is distributed among the liver, skin, and viscera. The mean concentration of 60 Co in fish has been decreasing at a rate faster than radiological decay alone. Most striking is the range of ²⁰⁷Bi concentrations among different species of fish collected at the same time and place. Highest concentrations of ²⁰⁷Bi were consistently detected in the muscle (and other tissues) of goatfish and some of the pelagic lagoon fish. In other reef fish, such as mullet, surgeonfish, and parrotfish, 207 Bi was usually below detection limits by gamma spectrometry. Over 70 percent of the whole-body activity of $^{207}\mathrm{Bi}$ in goatfish is associated with the muscle tissue, whereas less than 5 percent is found in the muscle of mullet and surgeonfish. Neither ²³⁹⁺²⁴⁰Pu nor ²⁴¹Am is significantly accumulated in the muscle tissue of any species of fish. Apparently, $^{238}\mathrm{Pu}$ is in a more readily available form for accumulation by fishes than $^{239+240}\text{Pu}$. Based on a daily ingestion rate of 200 q of fish flesh, dose rates to individuals through the fish-food ingestion pathway are well below current Federal quidelines. 翦 #### INTRODUCTION Bikini Atoll is located in the northern Marshall Islands at about $11^{\circ}36^{\circ}$ N, $165^{\circ}22^{\circ}$ E. The atoll now consists of 23 small coral islands surrounding a lagoon 35 km long, 21 km wide, and 630 km² in area. The average depth of the lagoon is 45 m. The total land area of the atoll is 6.2 km^2 . The Marshallese island names and the code letters and numbers we have assigned for reference to the islands of the atoll are shown in Table 1. Bikini Atoll is one of two sites in the northern Marshall Islands used by the United States as testing grounds for nuclear devices from 1946 to 1958. The U.S. code names for the nuclear tests ¹ are shown in Table 2, and the approximate locations ^{2,3} of these tests are indicated in Fig. 1. The locations in Fig. 1 designated by the letter "k" are old disposal sites for island debris removed in the 1969 cleanup of Bikini and Eneu Islands ⁴. Most of the tests were detonated on barges anchored in the lagoon or on the reef. Two tests were air drops, two were underwater, and three were surface explosions. Different quantities of the radioactive fission and activation products, generated during the explosions, were deposited on the lagoon and on the islands of the atoll. The U.S. moratorium on testing began on October 31, 1958, and marked the end of all nuclear testing at the atoll. However, even today quantities of long-lived fission products such as 137 Cs, 90 Sr, 155 Eu, and 113m Cd; activation products such as 55 Fe, 60 Co, and 207 Bi; and transuranium radionuclides such as 238,239,240,241 Pu and 241 Am persist in the atoll's environment. They are accumulated to different levels by indigenous terrestrial and aquatic plants and organisms that may be used as food by people. In the marine environment, the contaminated lagoon sediments are the major source of man-made radionuclides for fish and other marine organisms. In 1977, we initiated detailed studies at Bikini Atoll to define the physical, chemical, and biological transport mechanisms and the fate of transuranic and other long-lived radionuclides in this environment. A variety of species of fish was collected for radionuclide analysis. One objective of our studies was to provide an updated assessment of radiological dose to individuals via the marine food pathway, fish being one of the major marine-food products in the Marshall Islands. Data from Table 1. Present islands of Bikini Atoll. | etter and number ^a | Marshallese name | | | |-------------------------------|---------------------------|--|--| | <u>B-1</u> | Nam | | | | B-2 | <u>Iroij</u> | | | | B-3 | Odrik | | | | B-4 | Lomilik | | | | B - 5 | Aomen | | | | B-6 | <u>Bikini</u> | | | | B - 7 | Bokantauk | | | | 8-8 | Iomeler | | | | B - 9 | Enealo | | | | <u>B-10</u> | Rojkere | | | | B-11 | Eonjebi | | | | <u>B-12</u> | <u>Eneu</u> | | | | <u>B-13</u> | <u>Aerokoj-Aerokojlol</u> | | | | B-14 | Bikdrin | | | | B-15 | L e le | | | | B-16 | Eneman | | | | <u>B-17</u> | <u>Enidrik</u> | | | | B-18 | Lukoj | | | | B-19 | Jelete | | | | B-20 | Adrikan | | | | B-21 | Oroken | | | | <u>B-22</u> | <u>Bokoetoktak</u> | | | | <u>B-23</u> | Borkdrlul | | | ^a Underlined islands designate fishing sites. Table 2. Announced nuclear detonations at Bikini Atoll. | | | | Map ref. | |----------|----------|------------|----------| | Test | Date | Type | (Fig. 1) | | Able | 6/30/46 | Airdrop | A | | Baker | 7/24/46 | Underwater | А | | Brovo | 2/28/54 | Surface | В | | Romeo | 3/26/54 | Barge | В | | Koon | 4/6/54 | Surface | С | | Union | 4/25/54 | Barge | D | | Yankee | 5/4/54 | Barge | D | | Cherokee | 5/20/56 | Airdrop | Ε | | Zuni | 5/27/56 | Surface | С | | Flathead | 6/11/56 | Barqe | F | | Dakota | 6/25/56 | Barge | F · | | Navajo | 7/10/56 | Barqe | D | | Tewa | 7/20/56 | Barge | G | | Fir | 5/11/58 | Barge | В | | Nutmeg | 5/21/58 | Barge | Н | | Sycamore | 5/31/58 | Barge | В | | Maple | 6/10/58 | Barge | I | | ∤spen | 6/14/58 | Barge | В | | Redwood | 6/27/58 | Barge | I | | Hickory | 6/29/58 | Barge | Н | | Cedar | , 7/2/58 | Barge | В | | Poplar | 7/12/58 | Barge | J | | Juniper | 7/22/58 | Barge | Н | this assessment were published in 1982. Our second objective was to evaluate the biological accumulation and behavior of the transuranium isotopes at the atoll. This task continued through 1985. In conjunction with on-going studies at Enewetak Atoll, the collections and analyses of fish samples were conducted with several additional research objectives in mind. Among these objectives were studies to assess the differences in the concentrations of specific radionuclides in fish from different trophic levels, the magnitude of radionuclide concentration factors for different species of fish, the changes in body burdens of radionuclides in fish with time, tissue distributions of different radionuclides in different species of fish, the differences in radionuclide concentrations in fish from different regions of the atoll, and the usefulness of the current data for modeling concentrations of radionuclides accumulated by species of fish in similar or different marine environments. The marine program at Bikini Atoll, supported by the Office of Health and Environmental Research of the Department of Energy, was phased out in 1985. Some of the results generated from this program have been discussed in published report $\$^{-10}$. However, there remain a great deal of data on radionuclide concentrations in fish that are not included in the documents referred to above. This report is prepared to have, in one document, all available data on the concentrations of radionuclides in samples of fish that we collected from Bikini Atoll between 1977 and 1984. This document and previously published reports $^{6-17}$ contains nearly all of the historical data on concentrations of radionuclides in fish from Bikini Atoll since the initiation of nuclear testing. The radionuclides for which data are reported include all those detected by gamma spectrometry. In addition, the concentrations of $^{90}\mathrm{Sr}$, $^{113m}\mathrm{Cd}$, $^{238}\mathrm{Pu}$, $^{239+240}\mathrm{Pu}$, $^{241}\mathrm{Am}$, $^{210}\mathrm{Po}$, $^{210}\mathrm{Pb}$, and $^{210}\mathrm{Bi}$ are reported for those samples where radiochemical analysis was performed. snapper), are hovering, midwater-to-surface carnivores. Another snapper, Letherinus kallopterus (pigfish), is a bottom dweller that feeds primarily on benthic crustacea. Jacks and snappers are in the fourth trophic level. Tuna, Euthunnus affinis (bonito) and Gymnosarda nuda (Dog Tooth Tuna), and mackerel, Grammatorcynus billineatus, are large, rapid-swimming carnivores that feed on small fish and any other prey of proper size. They represent species of the fifth trophic level. In the remainder of this report, common names rather than scientific names will be used for convenience. #### SAMPLE PROCESSING AND
ANALYSIS Sample processing and analysis began with counting and partially thawing the fish from each location. The total weight, length, and sex of each fish was recorded. Each fish was dissected into muscle tissue, bone (cranial, thoracic, vertebrae, ribs, pelvic and pectoralgirdle), skin and scales (fins discarded), stomach (gizzard) contents, liver, and remaining viscera that generally included large and small intestines with contents, stomach wall, spleen, kidney, and mesenteries. The concentrations determined in the viscera samples are regrettably less descriptive than those for other tissues because of the matrix of organs and tissues represented. In some instances, however, a finer division of the visceral components was made. Each separate tissue and organ of the species from the same catch was pooled. It was necessary to pool tissues from a particular catch for analysis because of the low concentrations of transuranic radionuclides anticipated in edible muscle tissue. This resulted in the mixing of fish from several populations (weight classes) and of different sexes. Pecause mixing masked any differences in concentration related to weight (size), sorting of different size classes for processing was accomplished, in some instances, to assess the relationship of radionuclide concentration with weight. We were unable to relate any differences in concentrations of specific radionuclides with sex. Gills were separated from the fish but not analyzed. Our experience at Bikini and Enewetak Atolls showed that gills were frequently contaminated with sediment. Gills are not eaten and questionable information would be gained from their analysis because of the possible contamination. After the wet weight was determined, each pooled fish tissue sample was dried in ovens at 90°C to constant dry weight and ashed in muffle furnaces at 450°C . The only samples not prepared in this way were the samples to be analyzed for ^{210}Po . In those cases, wet tissues and organs were used. The scientific objectives for the analysis of fish in the Marshall Island program changed over the years. For example, initially fish were collected to assess the concentration of radionuclides in tissues of different species of fish. As the program progressed, dose assessment became an important issue, so our attention focused on the analysis of edible muscle tissue from fish collected at different locations. Later our interests shifted to evaluate the concentrations in muscle among different species collected simultaneously from the same lagoon location. As a result, not every tissue and organ separated from the fish collected over the years were processed for radionuclide analysis. The mean dry/wet weight ratios for the tissues and organs most frequently analyzed are shown in Table 3. The dry/wet weight ratios of the stomach contents are of particular interest, because the differences noted attest to the different feeding habits of different species. The percentage that the organ or tissue was of the whole body fresh weight was also determined for several species. These values are given in Table 4. The ashed samples were transferred to aluminum or plastic containers, sealed, and analyzed by gamma spectrometry at LLNL using a variety of Ge(Li)diode detector systems. Counting times were usually 1000 min or longer for each sample. A general purpose computer program, called GAMANAL, 19 was used for the data reduction of all gamma-ray spectra. In GAMANAL, the observed photopeak in the measured spectra is compared with a library of gamma-ray fission and activation products and naturally occurring radionuclides to identify the radionuclides in the sample. The program then applies correction factors for sample size, density, counting time, counting geometry, and decay to convert the measured counting rate to pCi/g of sample on the date of collection. The program also generates an upper-limit amount of specific spectral radionuclides based on those spectral regions where signals would be seen if the radionuclide were present in detectable quantities. Our minimal detectable concentrations (based on a counting time of 1000 min) for each of the longer-lived, man-made, gamma-emitting radionuclides routinely or occasionally detected in samples from the Marshall Islands are shown in Table 5. After gamma analysis, a number of samples were selected for radiochemical analysis for 90 Sr, 137 Cs, 113m Cd, 238,239,240 Pu, 241 Am, 210 Po, 210 Pb, and 210 Bi. Activities of these radionuclides were measured using either alpha- Table 3. Mean dry/wet weight ratios of fish tissues and organs. | | | Tiss | ue or organ | - mean dry/w | et wt ratio | | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | Fish common | | | Gizzard | | | | | name | Muscle | Bone | contents | Viscera | Skin | Liver | | Mullet | | | | | | | | <u>Crenimugil</u> | $0.23 \pm .01$ | 0.60 <u>+</u> .07 | 0.62 <u>+</u> .05 | 0.35 <u>+</u> .07 | $0.53 \pm .05$ | 0.24 + .05 | | Neomyxus | $0.23 \pm .01$ | 0.58 <u>+</u> .03 | 0.58 <u>+</u> .03 | 0.41 <u>+</u> .06 | $0.51 \pm .03$ | 0.28 <u>+</u> .03 | | Surgeonfish | $0.22 \pm .01$ | 0.59 <u>+</u> .03 | $0.15 \pm .04$ | 0.19 <u>+</u> .04 | 0.38 <u>+</u> .03 | 0.23 <u>+</u> .03 | | Goatfish | $0.23 \pm .02$ | 0.52 <u>+</u> .05 | 0.22 + .08 | 0.29 + .05 | 0.50 <u>+</u> .05 | $0.25 \pm .03$ | | Parrotfish | 0.22 <u>+</u> .04 | $0.56 \pm .02$ | 0.44 <u>+</u> .09 | $0.41 \pm .04$ | 0.43 <u>+</u> .03 | 0.40 <u>+</u> .12 | | Ulua | $0.24 \pm .01$ | $0.65 \pm .02$ | $0.19 \pm .03$ | 0.26 <u>+</u> .03 | 0.41 <u>+</u> .03 | 0.27 <u>+</u> .03 | | Jack | $0.24 \pm .01$ | $0.62 \pm .05$ | $0.25 \pm .03$ | 0.25 <u>+</u> .02 | $0.38 \pm .05$ | $0.25 \pm .04$ | | Rainbow runner | $0.26 \pm .01$ | $0.62 \pm .03$ | 0.22 <u>+</u> .02 | 0.32 + .05 | 0.48 <u>+</u> .02 | 0.33 <u>+</u> .07 | | Snapper | $0.23 \pm .01$ | 0.61 <u>+</u> .05 | $0.11 \pm .04$ | $0.23 \pm .01$ | $0.44 \pm .07$ | $0.27 \pm .03$ | | Mackere1 | $0.24 \pm .01$ | $0.54 \pm .03$ | 0.26 <u>+</u> .02 | 0.25 + .02 | $0.35 \pm .02$ | 0.26 <u>+</u> .03 | | Bonito | $0.29 \pm .01$ | $0.64 \pm .02$ | $0.24 \pm .02$ | 0.22 <u>+</u> .01 | 0.56 <u>+</u> .01 | 0.32 <u>+</u> .02 | Table 4. Mean percent of whole body weight of tissues and organs of fish. | | Mean % | | | | | | | |---------------------------|------------|----------|-------------|----------|---------|--|--| | Tissue or organ | Crenimugil | Neomyxus | Surgeonfish | Goatfish | Snapper | | | | Muscle | 58.9 | 55.3 | 66.3 | 66.3 | 76.7 | | | | Bone | 6.9 | 5.5 | 8.0 | 8.0 | 9.1 | | | | Skin | 7.1 | | | | | | | | Scales | 7.0 | | | | | | | | Skin + scales | 14.1 | 14.1 | 11.6 | 11.6 | 9.3 | | | | Eyes | 1.2 | 0.7 | 1.2 | 2.6 | 1.8 | | | | Ovary | 1.0 | 2.4 | 1.5 | | | | | | Testes | 1.8 | 1.2 | 1.1 | | 0.23 | | | | Gill | 1.8 | 1.4 | 1.6 | | 0.7 | | | | Liver + viscera + gizzard | 13.6 | | 7.9 | | | | | | Viscera + gizzard | 12.7 | 17.9 | 7.2 | 6.5 | 1.8 | | | | Viscera + liver | 11.8 | | | | | | | | Viscera | 10.9 | 16.1 | 6.5 | | | | | | Gizzard | 1.8 | 1.8 | | | | | | | Liver | 0.9 | 1.7 | 0.7 | 0.4 | 0.5 | | | | Gizzard contents | 0.7 | 0.7 | 0.7 | 0.08 | 0.03 | | | Table 5. Detection limits (lo) of selected gamma-emitting radionuclides in the Bikini Atoll environment as a function of sample size. | | | | <pre>pCi/sample - 1000 min counting time</pre> | | | | | | |-------------|-----------------|------------------|--|-------------------|-------------------|-------------------|-------------------|-------------------| | Sample size | 40 _K | ⁶⁰ Co | 110m _{Ag} | ¹²⁵ Sb | ¹³⁷ Cs | 155 _{Eu} | 207 _{Bi} | 241 _{Am} | | 3 ± 2 | 10 | 1.0 | 1.0 | 1.2 | 0.5 | 0.9 | 0.8 | 1.5 | | 10 ± 5 | 15 | 1.6 | 1.8 | 1.7 | 0.8 | 1.4 | 1.5 | 2.5 | | 70 ± 30 | 20 | 2.4 | 3.2 | 2.9 | 1.2 | 2.4 | 2.2 | 4.0 | | 160 ± 60 | 30 | 3.6 | 4.5 | 4.6 | 1.8 | 4.0 | 3.2 | 7.5 | spectrometer systems or low-background beta detectors. Measurements of these radionuclides were conducted because some were judged to be of potential significance for dose assessments and others were analyzed to meet specific programmatic objectives. The ^{137}Cs was often radiochemically separated from muscle tissue and analyzed to confirm the measurements made by gamma spectrometry, which, in turn, provided a useful laboratory calibration for quality control. Quality of data has always been an important aspect of our analytical measurements. As a standard practice, 5 to 10% of our time is devoted to quality-assurance work in all projects involving analytical measurements. This quality-assurance work includes: - Analysis of background samples and blanks. - Instrument calibration. - Duplicate sampling and analysis. - National and international interlaboratory standardization. - Replicate measurements. - Analysis and calibration traceable to National Bureau of Standards (NBS) samples. - Appropriate statistical analysis of the results. # RESULTS AND DISCUSSION Collection information, such as island sampled, common and scientific names of fish, number of fish pooled per sample, sex, average whole body weights, and average lengths, is presented in the odd-numbered tables in the Appendix. There is an odd-numbered table for each collection period. Each of these tables is followed by an even-numbered table showing the radionuclide concentrations in the separated tissues and organs from the species collected. The radionuclides detected most frequently in the muscle tissue and other organs by gamma spectrometry included (in addition to naturally occurring 40 K), 137 Cs, 60 Co, and 207 Bi. Occasionally the radionuclides 155 Eu, 241 Am, 125 Sb, 108 mAg, 102 mRh, and 113 mCd were also detected (by gamma spectrometry) in the viscera, liver, or stomach (gizzard) content samples of fish collected from the more contaminated regions of the
atoll. The concentrations of the transuranics and other radionuclides in tissues and organs analyzed by wet chemical methods are also listed. The locations of the islands sampled (island locator letter and number) are shown in Fig. 1. All concentrations are listed relative to dry weight but the dry/wet weight ratios provided may be applied to convert concentrations to a wet-weight basis. Representative whole fish concentrations of several radionuclides were reconstructed from the tissue and organ concentration data and the percentages of the respective tissues to whole body weight given in Table 4 for species representing 3 trophic levels (surgeonfish, mullet, trophic level II; goatfish, trophic level III; snapper, trophic level IV) collected from different islands of the atoll in 1978. These values were used to compute the percent of the whole body activity associated with the respective tissues. The results from these calculations are shown in Table 6 and are discussed in the following sections. 137_{Cs} The results in Table 6 show that most 137 Cs accumulated by fish from the atoll is found associated with the edible flesh; the lowest fractions are associated with bone or liver. Concentrations of 137 Cs in the flesh of all four species are approximately equivalent to the concentration in the reconstructed whole body. There is no straightforward relationship between Table 6. Reconstructed total body radioactivity associated with tissues and organs analyzed and measured muscle-tissue concentration. | Radionuclide | Common name | Island
locator | % of | | | | | Gizzard | Reconstructed
whole fish
concentration
pCi/kg wet wt ^b | Measured
muscle tissue
concentration
pCi/kq wet | |-----------------------|--|------------------------------|------------------------|-----------------------|-----------------------|-----------------------------|------------------------|---------------------------|--|--| | 137 _{Cs} | Surgeonfish
Mullet
Goatfish
Snapper | B-10
B-1
B-27
B-23 | 75
53
68
92 | 0.7
<0.9
<0.3 | 15
13
7
4 | 0.5
2
<0.4
<0.2 | 2
26
17
0.7 | 0.7
1
<0.2
10.01 | 42
206
47
123 | 47
198
48
147 | | 90 _{Sr} | Surgeonfish
Mullet
Goatfish
Snapper | 8-10
8-5
8-17
8-1 | 2
0.06
2
0.9 | 46
2
40
63 | 10
3
29
34 | 0.2
0.07
0.05
<0.1 | 34
82
22
<0.1 | 1
8
<0.1
<0.02 | 23
518
109
19 | 0.62
0.52
3.2
0.23 | | 60 _{Co} | Surgeonfish
Mullet
Goatfish
Snapper | 8-10
8-23
8-17
8-23 | 36
28
38
48 | 6
3
2
0.1 | 19
17
12
14 | 12
22
5
25 | 17
25
35
11 | 4
0.5
0.3
0.1 | 47
810
462
331 | 26
410
263
206 | | 207 _{Bi} | Surgeonfish
Mullet
Goatfish
Snapper | B-10
B-23
B-17
B-23 | <18
5
67
81 | <13
1
4
<0.1 | <9
4
10
3 | 33
5
1 | 19
76
10
2 | <3
5
<0.1
<0.01 | 2
54
225
279 | 0.6
4
226
330 | | 239+240 _{Pu} | Surgeonfish
Mullet
Goatfish
Snapper | B-10
B-23
B-17
B-1 | 0.2
0.2
0.1
4 | 5
0.5
0.7
26 | 3
0.5
0.9
50 | | 80
82
90
6 | 4
7
0.1
0.3 | 29
380
44
2 | 0.1
1.1
0.07
0.1 | | 241 _{Am} | Surgeonfish
Mullet
Goatfish
Snapper | B-10
B-23
B-17
B-1 | 0.1
0.9
0.1
2 | 2
0.2
1
24 | 2
0.5
1
51 | 1
4
1
17 | 85
69
89
5 | 5
21
0.2
0.3 | 12
69
14
1 | .03
1.0
0.03
0.04 | a Muscle, skin, bone, liver, viscera and gizzard contents account for 93-98% of total fish weight. Data is from 1978 collections. Concentrations in gills, eyes, and reproduction organs were not determined. • $[\]frac{b}{(\sum \frac{\text{pCi}}{\text{kg wet tissue}} \text{% tissue of whole body wt})} \sum_{\text{pCi}} \text{whole fish}$ $\sum \text{% tissue of whole body wt} \text{whole fish}$ the trophic position of the fish and their muscle burden of 137 Cs. The largest fraction of the 137 Cs is found in the muscle tissue of the 4th trophic level fish, snapper, and the lowest fraction in the 2nd trophic level fish, mullet. However, surgeonfish, also a 2nd trophic level species, have a larger fraction of the total 137 Cs in muscle tissue that is found in the 3rd trophic level fish, goatfish. The data on the concentrations of 137 Cs in the muscle tissue of fish are presented here in several ways to help in the interpretation of results. Table 7 contains a summary of the mean and range of 137 Cs concentrations (no corrections were made for radioactive decay) in the muscle tissue of reef fish from different islands and of pelagic species from the laqoon during the 8-year period. Concentrations of 137 Cs in the muscle tissue of all species of fish during this period ranged from 7 to 460 pCi/kg wet wt. The maximum concentration of 137 Cs in flesh, 460 pCi/kg wet wt, was measured in surgeonfish collected from island B-1 in 1983 and the mean concentration in the flesh of all reef fish during the 8 year period was 113 pCi/kg wet wt. The computed annual whole body dose equivalent rate to individuals from \$137_{Cs}\$ in the fish ingestion food pathway would have been less than 1 mrem. (Assuming a consumption rate of 200 g of fish flesh per day and a concentration of 113 pCi/kg wet wt). Between 1977 and 1984, generally higher concentrations of 137 Cs were measured in muscle of reef fish from the northwest quadrant of the atoll (B-1 to B-5), and the lowest levels were found associated with reef species from the eastern reef of the atoll. In 1982, marine fish fillets purchased from stores in the Chicago area of the United States, contained 23±2 pCi/kg of 137 Cs derived from glabal fallout 20 . Table 7 shows that the mean concentrations of 137 Cs in fish from islands B-10 to B-23 is now comparable to the fallout levels in the store purchased fish. Table 8 shows several examples of the different concentration for 137 Cs (pCi/kg wet wt) measured in the muscle tissue of different reef species collected from the same island during different years. The mean concentrations determined for all laqoon species during yearly intervals are shown in Table 7. There does not appear to be any precise trend indicating that the concentrations of 137 Cs in the muscle of these fish have been changing over the years at some consistent rate. There also appears to be no clear trends of consistent differences in concentrations among the different reef species simultaneously sampled from the same location (see Appendix). In 1978, for example, at island B-1, the highest concentration among the different reef Table 7. Mean concentrations of ^{137}Cs in the flesh of reef and pelagic fish from different islands and during different collection periods. | | | 137 _{Cs} (pCi/kg wet wt) | | | |---------------------------|-------------------|-----------------------------------|-----------------|--| | Island locator | Number of samples | Mean | Range | | | B-1 | 11 | 265 <u>+</u> 111 ^a | 130-460 | | | B-5 | 9 | 181 <u>+</u> 138 ^a | 40-370 | | | B-6 | 12 | 66 <u>+</u> 70 ^a | 12-240 | | | B-10 | 3 | 26 <u>+</u> 18 ^a | 14-50 | | | B-12 | 6 | 24 + 20 ^a | 7-62 | | | B-13 | 2 | 16 <u>+</u> 7 ^a | 11-21 | | | B-17 | 6 | 42 <u>+</u> 28 ^a | 12-90 | | | B-23 | 2 | 33 <u>+</u> 16 ^a | 20-45 | | | Pelagic species | 13 | 164 <u>+</u> 113 ^b | 60 - 380 | | | All reef fish (all lagoon | locations) | | | | | 1977-1978 | 28 | 119 | | | | 1980-1981 | 11 | 146 | | | | 1982-1984 | 12 | 97 | | | | 1977-1984 | 51 | 113 | | | ^a Mean concentration for all mullet, surgeonfish, goatfish and parrotfish collected between 197° and 1984. b Mean concentration from all pelagic species collected between 1977 and 1984. Table 8. Concentrations of 137 Cs in the muscle tissue of fish collected from locations at Bikini Atoll at different times. | | | 137 _{Cs} (pCi/kg wet wt) | | | | | | | |----------------|-----|-----------------------------------|-----|-------------------|-----------------------------|----------------------|--|--| | | | llet
imugil) | _ | onfish
thurus) | Goatfish
(Mulloidichtys) | Mullet
(Neomyxus) | | | | Period Sampled | B-1 | 8-6 | B-1 | B-5 | B-6 | B-17 | | | | 1/77 | 263 | | | | | 40 | | | | 11/78 | 397 | | 133 | 226 | 21 | 12 | | | | 9/80 | | 51 | | | 12 | | | | | 2/81 | 227 | 60 | | 320 | | | | | | 8/83 | 287 | | 430 | 43 | | | | | | 9/84 | | 53 | | | 16 | 13 | | | species was measured in mullet (Crenimugil). At Island B-1 in 1983 and at B-6 in 1980, the concentration in surgeonfish exceeded the measured concentration in mullet and goatfish. In 1984, the measured concentration of ¹³⁷Cs in the muscle tissue of goatfish was larger than the concentration measured in any of the pelagic species collected off the island; however, at B-6 and B-23 in 1978 and at B-6 in 1980, the concentration in goatfish was lower than the levels detected in pelagic species from the respective islands. Unless there is some unforeseen impact on the lagoon, such as the disposal of uncontained, contaminated soil to the lagoon floor, there should be no significant change in the mean concentration of $^{137}\mathrm{Cs}$ in the flesh of fish collected from Bikini in the near future (other than a continuous reduction from radioactive decay). Any concentrations of $^{137}\mathrm{Cs}$ in the muscle tissue of fish caught at the atoll in future years should fall below the upper limit noted in the last 8 year period. Hence, future dose rates to individuals from $^{137}\mathrm{Cs}$ in the fish-food pathway may be predicted with a reasonable degree of certainty from a knowledge of the islands to be fished, the consumption rate of reef and pelagic
fish, and parts of the fish normally eaten. 90_{Sr} Concentrations of 90 Sr were measured in the tissues from a small subset of the fish, primarily from the collections made in 1978. Inspection of Table 6 shows that most of the 90 Sr accumulated by fish is, unlike 137 Cs, associated with non-edible parts such as bone and viscera. In surgeonfish, goatfish, and snapper, most of the body burden of 90 Sr is found in the bone tissue. In mullet, however, the viscera contains the major fraction of 90 Sr. The high concentration of 90 Sr in the viscera is probably due to 90 Sr associated with the bottom sediments, which are inqested with food and are present in the intestinal tract. Intestinal tract contents were not separated from the viscera sample. Concentration of 90 Sr in the muscle tissue from all fish ranged from 0.2 to 5.7 pCi/kg wet wt. The mean concentration in muscle tissue is 1.7 pCi/kg wet wt. At this concentration and a consumption rate of 200 g of muscle tissue/d, the resulting mean dose-equivalent rate from 90 Sr in the marine fish-food ingestion pathway is less than 0.1 mrem/y. Concentrations of 90 Sr associated with muscle tissue are less than 3% of the concentration in the reconstructed whole fish (Table 6). Estimated dose-equivalent rates of 90 Sr from muscle only or from whole fish ingestion will differ by orders of magnitude. Therefore, it is misleading to use whole fish (or eviscerated whole fish) concentration data for 90 Sr to estimate radiological dose to individuals from 90 Sr in the marine fish-food pathway. 60_{Co} Between 1958 (the end of nuclear testing at the atoll) and 1984, 60 Co levels in the atoll environment have decreased by a factor of 5 from radioactive decay alone ($t_{1/2}$ = 5.26 y). However, measurable concentrations of 60 Co are still found in fish and other aquatic organisms. In fish, 25-50% of the total body burden of 60 is present in the muscle tissue with most of the remainder distributed among the liver, skin, and viscera (see Table 6). The levels of 60 Co in the muscle tissue of reef fish from different regions in the atoll differ somewhat in the same way as that of 137 Cs except that fish from the southwest portion of the atoll contain concentrations comparable to those in fish caught in the northwest quadrant of the atoll. Concentrations of 60 Co in the muscle tissue of bottom-feeding mullet and qoatfish were consistently higher than levels in other reef species, such as surgeonfish and parrotfish, and in pelagic species caught from the same island of the atoll. This pattern is repeated when concentrations in other tissues and organs of the different species are compared. In Table 9 are shown mean concentrations in the muscle of reef and pelagic fish collected from the lagoon during different periods between 1977 and 1984. The mean concentration of 60 Co in the muscle tissue of fish has been decreasing at a rate faster than that from radiological decay alone. When appropriate data were found, a comparison was made between the concentrations in specific tissues and organs measured in the 1977-1984 collections to those detected in the same tissues of the species collected from the same locations during 1964 and 1969. 11,13 A least squares fit of the appropriate present and historical data shows that the mean level of 60 Co has been declining in the tissues of fish from Bikiniwith an effective decay constant of $0.22 + 0.05 \text{ y}^{-1}$ (effective half-life of 3.2 y). The effective decay constant is the sum of the physical decay constant (0.1317 y^{-1}) and an environmental loss rate term that reflects the removal rate of 60 Co. This removal rate is usually expressed as the ecological half-life (or decay constant) and has a value for 60 Co of 7.8 y. The disappearance of 60 Co from Bikini lagoon and its availability to fishes is controlled both by radiological decay and by processes of remobilization, transport, and dilution. If ⁶⁰Co continues to decline in the environment at the present rate, the mean concentration of $^{60}\mathrm{Co}$ in the edible muscle tissue of fish from the lagoon should be less than 20 pCi/kg wet wt by the year 1990. Table 9. Mean concentrations of 60 Co in the muscle tissue of reef and pelagic fish collected at different times | | Collection | | 60Co (pCi/kg wet wt) | | | |---------------------|-------------------|-------------------|-----------------------|-------------------------|--| | | year
intervals | Number of samples | Mean
concentration | Range in concentrations | | | All reef species | 1977-1978 | 27 | 235±209 | 19-897 | | | | 1980-1981 | 12 | 146±110 | 31-430 | | | | 1982-1984 | 12 | 60±51 | 7-180 | | | All pelagic species | 1977-1978 | 4 | 166±124 | 55-324 | | | | 1981-1984 | 6 | 81±56 | 43-199 | | The presence of 207 Bi ($t_{1/2} = 33.4 \text{ y}$) was first reported in marine samples obtained from the Pacific Proving Grounds in 1961. 21 It was formed possibly from a series of nuclear reactions such as 207 Pb(p,n) or 206 Pb(p,γ), assuming stable lead was present during testing as shielding material near the nuclear devices. 22 Other than a recent report describing 207 Bi as a component in global fallout debris 23 , it has not been detected elsewhere as a component of any waste discharged to aquatic environments from nuclear facilities. Most striking was the range of concentrations found in tissues and organs among different species of fish collected at the same time and place (see Appendix). For three species of reef fish, mullet, surgeonfish, and parrotfish, ^{207}Bi in most parts of the fish was usually below detection limits by gamma spectrometry. However, the radionuclide was consistently detected in the muscle and other organs of goatfish and the pelagic lagoon Over 70 percent of the whole-body activity of ²⁰⁷Bi in goatfish and fish. pelagic fish is associated with the muscle tissue, whereas less than 5 percent (when detected) is found in the muscle of mullet and surgeonfish. Between 1977 and 1984, the concentrations in goatfish muscle ranged from a high of 1360 pCi/kg wet wt to a low of 17 pCi/kg wet wt, with the lowest levels found in fish collected from the eastern reef of the lagoon. There was no clear trend in the data to indicate that the concentration of $^{207}\mathrm{Bi}$ in the muscle of goatfish was changing with time at some constant rate. At B-1 and B-5, for example, the levels in muscle tissue were significantly less during the period of 1981-1983, compared to the concentrations measured in 1978. On the other hand, at B-6 and B-12, the concentrations measured in the muscle tissue of goatfish collected in 1984 were no different than the concentrations detected in 1978. # TRANSURANIUM RADIONUCLIDES Several reports on the concentrations of the transuranium elements in Bikini fish have been published by this laboratory. 9,10,24 Only previously unpublished results and a few highlights from published data will be discussed in this report. In Table 6 the data show that both $^{239+240}$ Pu and 241 Am are not significantly accumulated in the muscle tissue of any species of fish. Less than 1 percent of the total body burden of both $^{239+240}$ Pu and 241 Am is associated with the muscle tissue of all reef species. Somewhat higher fractions, but lower concentrations, were found associated with muscle tissue of pelagic species. The distributions of $^{239+240}$ Pu and 241 Am among the other tissues of the reef and pelagic species are also different. For example, the bone and skin of reef fish contain much less of the total body burden than that of snapper. These differences appear to be independent of location and the level of contamination and much more dependent on species. Arithmetic mean concentrations of ²³⁹⁺²⁴⁰Pu, ²³⁸Pu, and ²⁴¹Am in edible muscle tissue from all fish collected at Bikini during different periods between 1977 and 1984 are shown in Table 10. The results also show that there has been essentially no change in the mean concentration of ²³⁸⁺²⁴⁰Pu during the years of collection. Mean concentrations of the transuranic radionuclides in the flesh of fish from Bikini Atoll are a fraction of a pCi/kg wet wt. Barring any major impact on the lagoon environment that might affect the availability of the transuranic radionuclides to marine organisms, mean concentrations in the flesh of fish collected over the next 10 to 20 years should not differ greatly from present day values. The 30-y committed-dose equivalent to the bone marrow of individuals from the transuranic radionuclides in the fish-flesh-ingestion pathway (using 200 g/d as the ingestion rate and the mean value for flesh concentration) ranges from 3 to 6 mrem. This range results from increasing the adult gut-transfer coefficient for plutonium 9 from 1 x 10^{-4} to 5×10^{-4} . In fish with relatively high body burdens of $^{239+240}$ Pu, the $^{238}\mathrm{Pu}$ to $^{239+240}\mathrm{Pu}$ activity ratio in the muscle and other internal organs was usually higher than the activity ratio found in the material ingested by the fish. In many cases, the error associated with the measurements of ²³⁸Pu was large, and it could be argued that the differences among the samples were not real. However, the patterns repeat themselves regardless of the error associated with counting, indicating that the trends found for the different ratios among the tissues and gut-content samples of the fish are real. This indicates the possibility of discrimination between isotopes of plutonium, which is difficult to accept from a purely chemical viewpoint. Table 10. Summary of transuranic concentrations in the flesh of all fish from Bikini Atoll. | | | | pCi/kg wet wt ^a | | | | | |--------------------|-------------------------------------|-------------------------------------|----------------------------|-------------------|--|--|--| | | Period | 239+240 _{Pu} | 238 _{Pu} | 241 _{Am} | | | | | Arithmetic
mean |
1977-1978
1977-1981
1977-1984 | 0.39±0.34
0.37±0.32
0.29±0.30 | 0.020±0.021 | 0.18±0.28 | | | | | Range in
values | 1977-1984 | <0.007-1.1 | <.002-0.08 | <0.01-1.1 | | | | a If the radionuclide was below limits of detection, the concentration is not included in the average. steps were taken to analyze if discrimation between the isotopes of plutonium was taking place. Gizzard and intestinal contents were removed from samples of mullet collected from the more contaminated regions of Bikini and equilibrated with seawater for 5 hours. (Five hours is usually the normal time for the ingested material to pass through the gut of mullet.) From this experiment, the $^{238}\text{Pu}:^{239+240}\text{Pu}$ activity ratio was determined in the solid phase and in solution. Five sets of results are shown in Table 11. In every case, more ^{238}Pu relative to $^{239+240}\text{Pu}$ is measured in solution, which indicates that $^{238}\text{Pu}:$ in the material ingested by fish must be in a more readily soluble form than $^{239+240}\text{Pu}$. The concentrations of $^{239+240}$ Pu and 241 Am in fish from the lagoon differ markedly from organ to organ and species to species. Less than 20 percent of the samples showed the same relative amounts of 241 Am and $^{239+240}$ Pu in the body parts analyzed. Concentrations of plutonium in most fish parts from any location collected during different years have comparable concentrations showing that the fish maintain restricted feeding territories. The concentration ratio of 241 Am to $^{239+240}$ Pu in muscle, bone, skin, or liver was always either equivalent to or less than the ratio in the gut contents or viscera. If the internal body burdens of transuranic nuclides are accumulated by the fish through the qut, then it could be concluded that in most cases there is a discrimination against 241 Am relative to $^{239+240}$ Pu in different tissues. Table 11. Activity ratios of 238 Pu: $^{239+240}$ Pu in liquid and solid phases of gut contents after equilibration with seawater. | Solid phase | Liquid phase | Solid:liquid phase | |-------------|--------------|--------------------| | 0.0081 | 0.13 | 0.062 | | 0.048 | 0.11 | 0.43 | | 0.003 | 0.14 | 0.021 | | 0.010 | 0.22 | 0.045 | | 0.0034 | 0.27 | 0.13 | Curium-242,243,244 have been detected in some fish tissues from Bikini. Concentrations of 243 , 244 Cm are a few percent of the $^{239+240}$ Pu concentrations and 242 Cm is less than 1 percent of the $^{239+240}$ Pu levels in the entire fish. The detection of 242 Cm ($t_{1/2}$ = 163 d), approximately 25 years after the end of testing, indicates the presence of a parent radionuclide, 242 Mm, in the environment. # OTHER RADIONUCLIDES Concentrations of 113m Cd and naturally occurring 210 Pu, 210 Po, and 210 Bi determined in fish samples are listed in the Appendix. Discussions of the concentrations and significance of these radionuclides at Bikini Atoll have been presented in the literature 6,7,8 and will not be repeated here. ## **SUMMARY** Over 1550 fish representing species from all trophic levels were collected from regions of Bikini lagoon between 1977 and 1984. Concentrations of gamma-emitting radionuclides accumulated in the different tissues and organs of these fish were determined. A number of samples were selected for the radiochemical analysis of $^{90}\mathrm{Sr}$, $^{113m}\mathrm{Cd}$, $^{238},^{239},^{240}\mathrm{Pu}$, $^{241}\mathrm{Am}$, $^{210}\mathrm{Po}$, $^{210}\mathrm{Pb}$, and $^{210}\mathrm{Bi}$. Activities of these radionuclides were measured in the tissues using appropriate alpha-spectrometer systems or low-background beta detectors. All the radionuclide-concentration data are tabulated in the Appendix. A reasonable data base was developed over the 8-year period to define adequately the range in concentrations of the different radionuclides in edible muscle tissue and other organs of fish from the lagoon at Bikini Atoll. Unless there is some unforeseen impact on the lagoon that would significantly alter the environmental concentrations of the different radionuclides, there is little reason to expect that concentrations of the different radionuclides in fish in future years will exceed the upper concentration limits determined over the last 8-year period. The present mean levels of radionuclides in edible muscle tissue of fish can be used with a reasonable degree of confidence to predict the magnitude of future radiological doses to individuals from the marine fish-food pathway at Bikini Atoll. ## ACKNOWLEDGMENTS The collection and publication of the data in this report was made possible through the efforts of a group of people too numerous to list. They include the crew on the research vessels, Liktanur I and II, and a number of individuals associated with Lawrence Livermore National Laboratory who assisted in the field collections and sample processing. This work was performed under the auspices of the U.S. Department of Energy under contract number W-7405-Eng-48. # REFERENCES - U.S. Dept. of Energy, <u>Announced United States Nuclear Tests</u>, U.S. Department of Energy, Nevada Operations Office, Las Vegas, NV, NVO-209 Rev. 2 (1982). - 2. H.L. Beck, B.G. Bennett, and T.F. McCraw, <u>External Radiation Levels on Bikini Atoll May 1967</u>, U.S. Atomic Energy Commission, Health and Safety Laboratory, NY, NY, HASL-190 (1967). - 3. W.R. Schell, F.G. Lowman, and R.P. Marshall, Geochemistry of Transuranic Elements at Bikini Atoll, <u>Transuranic Elements the Environment</u>, W.C. Hanson, Ed., U.S. Deptartment of Energy, Washington, DC, DOE/TIC-22800, (1980)p. 541-577. - 4. A.E. Smith and W.E. Moore, <u>Report of the Radiological Clean-up of Bikini Atoll</u>, U.S. Environmental Protection Agency, Western Env. Geo. Lab., Las Vegas, NV, SWRHL-111r, (1972). - 5. W.L. Robison, M.E. Mount, W.A. Phillips, M.L. Stuart, S.P. Thompson, C.L. Conrado, and A.C. Stoker, <u>An Updated Radiological Dose Assessment of Bikini and Eneu Islands at Bikini Atoll</u>, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53225 (1982). - 6. V.E. Noshkin, K.M. Wong, R.J. Eagle, and D.L. Anglin, "Concentrations of 113m Cd in the Maxine Environment," <u>Nature</u> <u>287</u>, 221-223 (1980). - 7. V.E. Noshkin, K.M. Wong, R.J. Eagle, and D.L. Anglin, Detection of Cadmium Radioactivity in the Marine Environment, <u>Impact of Radionuclide</u> <u>Releases into the Marine Environment</u> (International Symposium, October 6-10, 1980, Vienna), IAEA (1981). - 8. V.E. Noshkin, K.M. Wong, R.J. Eagle, and T.A. Jokela, "Concentrations of ²⁰⁷Bi and ²¹⁰Pb-²¹⁰Bi-²¹⁰Po Disequilibrium in Fish," <u>Pacific</u> <u>Science</u> 38 (4), 350-355 (1984). - 9. V.E. Noshkin, K.M. Wong, R.J. Eagle, and W.L. Robison, <u>Comparative</u> <u>Concentrations of 137Cs</u>, 90Sr, 239+240pu and 241Am, Tissues of <u>Fish from the Marshall Islands</u>, Symposium in Environmental Research for Actinide Elements, Department of Energy, Hilton Head Island, South Carolina, November 1983 (in press). - 10. V.E. Noshkin, R.J. Eagle, K.M. Wong, and T.A. Jokela, "Transuranic Concentrations in Reef and Pelagic Fish from the Marshall Islands," Impacts of Radionuclide Releases Into the Marine Environment, (International Symposium, October 6-10, 1980) IAEA (1981). - 11. A.D. Welander, K. Bonham, R.F. Palumbo, S.E. Gessel, F.G. Jackson, R. McClin, and G.B. Lewis, <u>Bikini-Enewetak Studies</u>, 1964. Part II Radiobiological Studies, Laboratory of Radiation Biology, Univiversity of Washington, Seattle, WA, UWFL-93 (1967). - 12. A.D. Welander, "Distribution of Radionuclides in the Environment of Enewetak and Bikini Atolls," <u>Symposium on Radioecology</u>, D.J. Nelson and F.C. Evans, Eds., U.S. Atomic Energy Commission, Washington, DC, CONF-670503, (1964). - 13. E.E. Held, <u>Radiological Resurvey of Animals, Soils and Groundwater at Bikini Atoll, 1969-70</u>, U.S. Atomic Energy Commission, Nevada Operations Office, Las Vegas, NV, NVO-269-8 Rev. 1, (1971). - 14. E.E. Held, "Fallout Radionuclides in Pacific Ocean Tuna," <u>Radionuclides</u> in Ecosystems (Symposium, Oak Ridge Tenn, 1971) D.J. Nelson, Ed., U.S. Atomic Energy Commission, Washington, DC, Conf. 7100501-II (1973). - 15. A. Nevissi and W.R. Schell, "²¹⁰Po and ²³⁹Pu, ²⁴⁰Pu in Biological and Water Samples from the Bikini and Enewetak Atolls," <u>Nature 255</u>, 321-323 (1975). - 16. O.D.T. Lynch, Jr., T.F. McCraw, V.A. Nelson, and W.E. Moore, <u>Radiological</u> <u>Resurvey of Food, Soil, Air and Groundwater at Bikini Atoll, 1972</u>, U.S. Energy and Research Development Administration, Washington, DC, ERDA-34 (1975). - 17. V.A. Nelson, Radiological Survey of Plants, Animals and Soils at Christmas Island and Seven Atolls in the Marshall Islands, Progress Report for 1974-1975, U..S Atomic Energy Commission, Nevada Operations Office, Las Vegas, NV, NVO-269-32 (1977). - 18. R.W. Hiatt and D.W. Strasburg, "Ecological Relationships of the Fish Fauna on Coral Reefs of the Marshall Islands," <u>Ecol Monographics</u> 30, (1965). - 19. R. Gunick and J.B. Niday, <u>Computer Quantitative Analysis by Gamma-Ray Spectrometry: Vol. 1. Description of the Gamanal Program</u>. Lawrence Livermore National Laboratory, Livermore, CA, UCRL-51061 (1972). - 20. J.O. Karthunen, <u>Cesium-137 in Various Chicago Foods</u>, Environmental Measurements Laboratory, NY, NY, EML-413 (1982), pp. III-3. - 21. F.G. Lowman and R.F. Palumbo, "Occurrence of Bismuth-207 at Enewetak Atoll," Nature 193, 796-797, (1962). - 22. T.M. Beasley, "Lead-210 Production by Nuclear Devices: 1946-1958." <u>Nature</u> 224, 573 (1969). - 23. A. Aarkrog, H. Dahlgaard, E. Holm, and L. Hallstadius, "Evidence for Bismuth-207 in Global Fallout," <u>J. of Env. Radioactivity</u> <u>1</u>, 107-117 (1984). - 24. V.E. Noshkin, R.J. Eagle, K.M. Wong, T.A. Jokela, J.L. Brunk, and K.V. Marsh, Concentrations of Radionuclides in Reef and Lagoon Pelagic Fish from the Marshall Islands, Lawrence Livermore National Laboratory,
Livermore, CA, UCID-19028 (1981). Appendix Table A. . 1977 Fish collections Bikini Atoll. | 1
1
2
2 | | | Number of | whole body | standard | | | |------------------|-------------|-----------------------|------------------------------|------------------|----------------|------|--------| | collected | Соптол пате | Scientific name | individuals
pooled/sample | wet wt
(gm) | length
(mm) | Male | Female | | January | Mullet | Crenimugil crenilabis | 8 | n/d ^a | 325 | - | 7 | | January | Mullet | Crenimugil crenilabis | 21 | p/u | 287 | 11 | 10 | | January | Mullet | Crenimugil crenilabis | Ξ | p/u | 27.1 | | 10 | | January | Mullet | Crenimugil crenilabis | 22 | p/u | 279 | 0 | 22 | | January | Mullet | Neomyxus chaptalii | 14 | p/u | 221 | 2 | 5 | | January | Mullet | Neomyxus chaptalii | 43 | p/u | 226 | Ξ | 32 | | January | Mullet | Neomyxus chaptalii | 58 | p/u | 229 | 6 | 47 | means not determined. Table A-2. 1977 Concentrations of radionuclides in fish tissue - Bikini Atoll. | | Other | | | | | | | | | | | ^{102m} Rh 50 (20) | 102mRh 95 (19) | | | | | | | | | | | | | | | |--------------------------------|---|----------|----------|----------------|----------------------|---------------|----------|----------|----------|-----------|----------|----------------------------|-------------------|---------------------|---------------------|---------------------|-----------|----------|-----------|----------|----------|----------|------------------------|---------------|-----------------|----------|---------| | | 238 _{Pu} | | <0.02 | 0.93 (8) | 29.5 (3) | 53 (3) | 0.9 (50) | 1.0 (28) | 9.6 (6) | 0.10 (25) | 1.33 (5) | 590 (2) | 1090 (2) | 1120 (2) | 1240 (2) | 1250 (2) | 3 (40) | 7.0 (6) | 19 (24) | 6 (14) | 0.01 | | 4.3 (6) | 9.4 (12) | 4.0 | 0.5 (23) | 5.8 (8) | | E | 207 _{8 i} | | \$ | < \$ | 140 (12) | 190 (18) | 300 (29) | <10 | 23 (26) | ٥ | \$ | 104 (11) | 252 (10) | | | | ~000 | 6> | <100 | ۵. | \$ | 12 (26) | 41 (11) | 30 | <30 | 86 (18) | 3 | | pCi/kg dry weight ^a | °2 ₀₉ | | 200 (2) | 540 (7) | 4150 (1) | (9) 089 | 7400 (5) | 6350 (1) | (1) 0191 | (1) 0111 | 280 (4) | 7500 (1) | 1710 (4) | | | | 14100 (3) | 2200 (2) | (6) 00501 | 1030 (1) | 320 (6) | 90 (13) | 1400 (2) | 220 (18) | 1060 (6) | (9) 055 | 260 (4) | | . pCi/ | 137 _{Cs} | | 1040 (3) | 38 (23) | 750 (5) | 740 (8) | 540 (29) | 150 (19) | 320 (5) | 1550 (2) | 55 (14) | 1660 (14) | 1840 (3) | | | | 1140 (28) | 120 (18) | 1470 (15) | 430 (3) | 110 (6) | 9> | 53 (12) | <40 | <40 | <30 | 35 (20) | | | 239+240 _{pu} 241 _{Am} | | 1.5 (5) | 19.0 (3) | 6300 (2) | 7340 (1) | 58 (2) | 120 (25) | 134 (7) | 2.2 (5) | 38.0 (3) | 13700 (6) | 25300 (5) | 25500 (5) | 28700 (5) | 28400 (6) | 46 (5) | 200 (25) | 630 (5) | 110 (24) | 0.56 (6) | 6.9 (3) | 710 (1) | 1070 (5) | 10 (6) 6.8 (17) | 32 (25) | 82 (10) | | | 40 _K
(×10 ³) | | 15.1 (2) | 1.3 (13) | 4.0 (8) | 2 (35) | 10 (16) | 2.2 (12) | 4.7 (4) | 16.4 (1) | 0.9 (11) | 5.9 (3) | 1.6 (24) | | | | 9 (30) | 1.8 (13) | | 4.6 (1) | 16.0 (2) | 0.5 (18) | 5.7 (2) | 3.0 (21) | 7.3 (10) | 2.3 (21) | 4.0 (3) | | | Dry/wet
weight | | 0.253 | 0.585 | 0.414 | t. 0.645 | 0.232 | 0.189 | 0.532 | 0.245 | 0.629 | 0.317 | t. 0.637 | t. 0.637 | t. 0.637 | t. 0.637 | 0.256 | 0.229 | 0.213 | 0.509 | 0.235 | 0.575 | 0.311 | t. 0.568 | 0.315 | 0.226 | 0.500 | | | i
r Tissue | crenimuq | Muscle | Bone | Viscera ^b | Stomach cont. | Ovary | 6111 | Skin | Muscle | Bone | Viscera ^b | Stomach cont. | Stomach cont. 0.637 | Stomach cont. 0.637 | Stomach cont. 0.637 | Ovary | 61118 | Testes | Skin | Muscle | Bone | Viscera ^b , | Stomach cont. | Ovary | 61118 | Skin | | | Island
locator | - 1911nu | 8-1 | | | | | | | 8-2 | | | | | | | | | | | 8-12 | | | | | | | | | Sample
IO | : ame u | 2896 | 2897 | 2898 | 5899 | 2900 | 2901 | 2902 | 2880 | 2881 | 2882 | 2883 ^c | 2883 ^c | 2883 ^c | 2883 ^c | 2884 | 2885 | 5886 | 2887 | 2860 | 2867 | 2862 | 2863 | 2864 | 2865 | 2861 | Table A-2. (Continued) | | Other | | | | | | | | | | | | | 155 _{F.11} 3980/121 | 73000(15) | | | 155 _{F.11} 2880(10) | 101 0003 23 | | | | | | | | | | | |--------------------------------|--|---------------|---|-----------|-----------|---------------|----------------------|---------------------|----------|----------|-------------------|----------|----------|------------------------------|-----------|-------|-----------|------------------------------|----------------------|--------|-------|-----------|-----------|----------------------|---------------|----------|-----------|----------|-----------| | | 238 _{Pu} | | | <0.04 | 0.32 (13) | 0.33 (7) | 7.0 (10) | 20.0 (4) | 0.5 (35) | 1.0 (11) | | 0.03(26) | (07)60.0 | 46 1 (3) | | | | | | | | 0.04 (20) | 0.13 (21) | 11.7 (3) | 14.8 (7) | <0.07 | 2.3 (70) | 0.8 (50) | 0.15 (26) | | £ a | 207 _{8 i} | | | <2 | ^4 | < 3 | 25 (20) | <20 | <10 | <10 | | <12 | | <150 | | | | 210(16) | | | | 7.2 (30) | <5 | 77 (10) | 60 (21) | <10 | .500 | 80 (25) | <4 | | pCi/kg dry weight ^a | °°3 ₀₉ | | | 273 (5) | 320 (3) | 110 (7) | 2140 (3) | <40 | 1700 (4) | 980 (3) | | 2080(3) | | 1400(20) | ()))) | | | 1660(6) | | | | 670 (2) | 110 (9) | 1650 (1) | 300 (8) | 2300 (2) | 2400 (16) | 1340 (4) | 550 (4) | | /iJd | 137 _{Cs} | | | 88 (5) | 17 (28) | <5 | 33 (22) | <30 | <20 | <20 | | 950(3) | | 1100(23) | | | | 1115(7) | | | | 55 (10) | <5 > | (16) | <20 | <20 | <300 | <20 | 20 (24) | | | 241 _{Am} | | | | | | | | (9) 0.5 | 239+240 _{Pu} | | | 0.38 (14) | (11) 91 | 7.2 (3) | 440 (3) | 1130 (4) | 12 (4) | 27 (25) | | 3.3 (3) | | 9800 (2) | | | | | | | | 2.5 (7) | 8.2 (2) | 2000 (1) | 2970 (5) | 25 (2) | 33 (12) | 61 (2) | 8.1 (5) | | | ⁴⁰ K
(×10 ³) | | | 16.5 (1) | 3.7 (3) | 0.8 (10) | 7.1 (2) | 1.3 (30) | 9.0 (4) | 1.3 (18) | | 12.2 (2) | | | | | | 3.5 22 | | ٠., | i | 13.0 (2) | 0.5 (21) | 4.9 (4) | 2.0 (15) | 5.5 (5) | 15 (35) | 2.7 (14 | 4.4 (4) | | | Ory/wet
weight | (continued) | • | 0.238 | 0.529 | 0.562 | 0.309 | . 0.709 | 0.298 | 0.241 | | 0.244 | 0.476 | . 0.552 | 0.185 | 0.237 | | 0.450 | 0.423 | .9250 | 0.342 | 0.315 | | 0.338 | 0.568 | 0.334 | 0.210 | 0.182 | 0.513 | | | ir Tissue | Crenimugil (c | | Muscle | Skin | Bone | Viscera ^D | Stomach cont. 0.709 | Ovary | Gills | Mullet - Neomyxus | Muscle | Bone | Gizzard cont. | Gizzard | Liver | Intestine | cont. | Viscera ^d | Scales | Skin | Muscle | Bone | Viscera ^b | Stomach cont. | Ovary | Testes | Gills | Skin | | | island
locator | Mullet - | | 8-13 | | | | | | | Mullet - | 8-1 | | | | | | | | | | B-10 | | | | | | | | | ć | sample
ID | Name: | | 2851 | 2852 | 2853 | 2854 | 2855 | 5856 | 2858 | Name: | MSA 458 | 459 | 460 | 461 | 462 | 463 | | 464 | 465 | 466 | 2888 | 2889 | 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | Table A-2. (Continued) | , | | | | | | | pCi/ | pCi/kg dry weight ^a | ros. | | | |--------------|-----------------------------|-------------------------------------|-------------------|-----------------------------------|---|--|-------------------|--------------------------------|--------------------|-------------------|----------------------------| | Sample
ID | Sample Island
ID locator | Tissue | Dry/wet
weight | vet 40K
it (x10 ³) | 239+240 _{pu} 241 _{Am} | | 137 _{Cs} | °3 ₀₉ | 207 _{8 i} | 238 _{Pu} | Other | | Name: M | ullet - N | dame: Mullet - Neomyxus (continued) | ontinued) | | | The state of s | | | | | | | 2872 | 8-17 | Muscle | 0.237 | 14.4 (2) | 3.7 (9) | 0.4 (33) | 167 (4) | 1590 (1) | 22 (13) | 0.37 (22) | | | 2873 | | Skin | 0.490 | 4.5 (2) | 15.0 (10) | | 64 (13) | 1550 (1) | 34 (11) | 1.20 (13) | | | 2874 | | Viscera ^b | 0.392 | 3.7 (3) | 3050 (3) | | 450 (4) | 3000 (1) | 920 (2) | 5 0 (2 | ^{102m} kh 180 (6) | | 2875 | • | Stomach cont. | ř. | 2.0 (7) | 5600 (7) | 1010 (2) | 1230 (2) | 210 (7)
| 1050 (1) | | ^{102т} кь 270 (3) | | 2876 | - | Ovary | 0.331 | 4.9 (4) | 78 (5) | | 40 (29) | 5200 (1) | 42 (21) | 9.4 (6) | | | 2877 | _ | 6111 | 0.170 | 3.3 (11) | (9) 061 | | <30 | 3900 (2) | 70 (22) | 23 (7) | | | 2878 | | Testes | 0.228 | | 50 (15) | | < 400 | 5400 (10) | <300 | 7.5 (50) | | | 2879 | _ | Bone | 909.0 | 1.1 (14) | 16 (5) | | 8> | 410 (3) | 1> | 1.4 (8) | | a Numbers in parenthesis are the 1 σ counting error expressed as percent of the value listed. b Viscera sample includes gizzard (stomach), intestine with contents, and liver. c Replicate analysis. d Viscera sample includes remainder of G.I. tract without contents and gonads. Table A-3. 1978 Fish collections - Bikini Atoll. | Island
locator | Month
collected | Common name | Scientific name | Number of
individuals
pooled/sample | Average
whole body
wet wt
(gm) | Average
standard
length
(mm) | Male | Female | |-------------------|--------------------|-------------|--------------------------|---|---|---------------------------------------|--------|--------| | 8-1 | November | Mullet | Crenimugil crenilabis | 12 | 641 | 298 | ,
, | - | | B-5 | November | Mullet | Crenimugil crenilabis | ಜ | 712 | 303 | - Lr | - ، | | B-13 | November | Mullet | Crenimuqil crenilabis | œ | 492 | 275 | n ~ | יט ר | | 8-17 | November | Mullet | Crenimugil crenilabis | 6 | 545 | 297 | · c | ာတ | | 8
 | November | Mullet | Neomyxus chaptalii | 18 | 183 | 208 | 13 | , ro | | α-υ
υ , | November | Mullet | Neomyxus chaptalii | 24 | 181 | 202 | 12 | 12 | | 8-12
11 | November | Mullet | Neomyxus chaptalii | 2.1 | 209 | 212 | 13 | æ | | /1-9 | November | Mullet | Neomyxus chaptalii | 18 | 177 | 204 | 6 | 6 | | B-23 | November | Mullet | Neomyxus chaptalii | 35 | 151 | 193 | 23 | 12 | | - u | November | Surgeonfish | Acanthurus triostequs | 4 | 62 | 109 | 0 | 4 | | g-5 | November | Surgeonfish | Acanthurus triostegus | 20 | 65 | 108 | 12 | . α | | g-6 | November | Surgeonfish | Acanthurus triostegus | 55 | 64 | 103 | 33 | 24 | | B-10 | November | Surgeonfish | Acanthurus triostegus | 46 | 89 | 108 | 30 | 16 | | 8-12 | November | Surgeonfish | Acanthurus triostegus | 64 | 64 | 110 | 45 | 5 6 | | B-13 | November | Surgeonfish | Acanthurus triostegus | 31 | 88 | 115 | 00 | 23 | | - 1 | November | Goatfish | Mulloidichthys samoensi | is 33 | 91 | 162 | 25 |) α | | B-5 | November | Goatfish | Mulloidichthys samoensis | is 22 | 147 | 187 | : = | · = | | - e
- e | November | Goatfish | Mulloidichthys samoensis | <u>is</u> 39 | 127 | 180 | 26 | 13 | | B-10 | November | Goatfish | Mulloidichthys samoensis | is 42 | Ξ | 173 | 32 |]0 | | 8-12 | November | Goatfish | Mulloidichthys samoensis | 15 42 | 16 | 166 | 38 | 5 4 | | 8-13 | November | Goatfish | Mulloidichthys samoensi | 3 31 | 88 | 115 |) α | 23 | | 8-17 | November | Goatfish | Mulloidichthys samoensi | 15 37 | 93 | 171 | = | | | B-23 | November | Goatfish | Mulloidichthys samoensis | 5 47 | 86 | 160 | 36 | | | 8-17 | November | Parrotfish | Scarus sordidus | 5 | 840 | 293 | 0 | · .c | | Lagoon | November | Snapper | Aprion virescens | 2 | 2270 | 520 | _ | - | | (near Bravo | 0 / 1 | | | | | | | | | (rater) | | | | | | | | | Table A-3. (Continued) | | | | | | į | | | | |-----------------------|--------------------|---|----------------------------|---|---|-------------------------------|------|-------------| | Island
locator | Month
collected | Сомтоп пате | Scientific name | Number of
individuals
pooled/sample | Average
whole body
wet wt
(qm) | Average
Standard
length | | | | Lagoon | | | | | , | () | мате | Male Female | | (W of B-6)
Lagoon | November | Snapper | Lutjanus bohar | - | 2971 | 530 | - | | | (Off B-23) | November | Snapper | Lutianus hobas | | | | _ | 0 | | Lagoon
(Near Bravo | | | IBIOG CALL | | 2214 | 480 | 0 | _ | | Crater) | November | Jack | Caranx sp. | _ | 1126 | 0 | | | | Lagoon
(W of B-6) | November | Σ
70
10
10
10
10
10
10
10
10
10
10
10
10
10 | | | 671) | 490 | 0 | - | | | | | brammatorcynus billineatus | 1 | 1879 | 595 | | 0 | Table A-4. 1978 Concentrations of radionuclides in fish tissue - Bikini Atoll. | | Other | | | | | | , | ^{108m} Ag 340 (14) | | | | | | | | | | | | | | 244 _{Cm} 0.07 (33) | | | | ^{108m} Ag 210 2 | |--------------------------------|--|------------|------------|----------|---------------|----------|-----------|-----------------------------|------------|----------|---------------|-----------|-----------|-----------|------------|-----------|---------------|----------|-----------|-----------|-----------|-----------------------------|---------------------|-----------|----------|--------------------------| | | 238 _{Pu} | | 0.045 (25) | 1.20 (4) | 44 (4) | | 0.36 (12) | | 0.031 (30) | 1.0 (13) | 210 (1) | 148 (1) | 0.41 (30) | 39.5 (3) | 0.032 (35) | 0.22 (21) | 23.9 (6) | 13.6 (2) | 0.08 (40) | 20 (16) | 0.08 (22) | 2.1 (11) | 9.4 (20) | 11.2 (13) | 1.1 (15) | | | qht ^a | 207 _{B i} | | 16 (21) | 9> | 190 (11) | 130 (11) | 9> | 460 (15) | , | <7 | 40 (33) | 40 (15) | <5 | 09> | | | 60 (32) | 35 (13) | \$ | <70 | ç | 9> | <300 | 50 (21) | 9> | 360 (20) | | pCi/kg dry weiqht ^a | °0 ₀₉ | | 3660 (1) | 1360 (2) | 730 (5) | 4510 (1) | 3450 (1) | 79200 (1) | 947 (1) | 440 (5) | 760 (5) | 1920 (2) | 890 (3) | 33400 (1) | | | 155 (26) | 630 (3) | 250 (6) | 20000 (1) | 640 (2) | 120 (28) | <500 | 2060 | 590 (3) | 29300 (2) | | Jd | 137 _{Cs} | | 1620 (1) | 37 (22) | 910 (4) | 1000 (2) | 390 (4) | 1450 (8) | 1450 (1) | 80 (12) | 3400 (2) | 2310 (1) | 400 (4) | 720 (12) | | | <20 | 90 (16) | 19 (30) | ? 06> | 400 (2) | 6> | <200 | 9 098 | 100 (10) | 560 (22) 3 | | · | 241 _{Am} | | | 20.9 (4) | 5400 (29) | 1220 (2) | 10.3 (3) | | | | 5150 (3) | 930 (4) | 4.2 (7) | 740 (4) | | | 610 (3) | 98 (2) | | 333 (2) | 0.3 (80) | 5.5 (4) | | | | | | | 239+240 _{pu} | | 2.6 (5) | 93 (3) | 8000 (20) | | 33 (2) | | 1.09 (7) | 42 (6) | 10000 (3) | 4000 (20) | 15.0 (6) | 1810. (2) | 0.36 (7) | 8.90 (4) | 1260 (3) | 740 (3) | 4.2 (6) | 840 (2) | 1.25 (6) | 23 (5) | 210 (4 | 147 (3 | 9 0 | | | | ⁴⁰ k
(×10 ³) | | 14.2 (2) | 0.6 (18) | 1.4 (22) | 3.8 (3) | 4.0 (5) | 16.2 (6) | 13.9 (1) | 1.2 (14) | 1.7 (23) | 3.8 (6) | 4.4 (4) | 10.6 (8) | | | | 4.5 (4) | 4.9.(4) | 17.8 (8) | 16.3 (1) | 1.4 (11) | | 14.3 (2) | 4.9 (4) | 21.0 (7) | | | Dry/wet
weight | ļ | 0.245 | 0.648 | . 0.654 | 0.413 | 0.569 | 0.253 | 0.257 | 9 0 | . 0.598 | 0.43 | 0.575 | 0.291 | 0.232 | 0.593 | . 0.639 | 0.404 | 0.552 | 0.241 | 0.222 | 0.616 | 0,305 | 0.212 | 0.539 | 0.228 | | | Tissue ^b | Crenimugil | Muscle | Bone | Stomach cont. | Viscera | Skin | Liver | Muscle | Bone | Stomach cont. | Viscera | Skin | Liver | Muscle | Bone | Stomach cont. | Viscera | Skin | Liver | Muscle | Bone | Stomach cont. 0.305 | Viscera | Skin | Liver | | | Island
locator | Mullet | 8~ | | | | | | 8 5 | | | | | | 8-13 | | | | | | 8-17 | | | | | | | | Sample
10 | Name: | 9 33 | 9134 | 9135 | 9136 | 9137 | 9138 | 7245 | 7246 | 7247 | 7248 | 7249 | 7250 | 7212 | 7213 | 7214 | 7215 | 7216 | 7217 | 7293 | 7294 | 7295 | 7296 | 7297 | 7298 | Table A-4. (Continued) | Sample Island
ID locator Tissue ^b | Dry/wet
weight | t 40 _K (×10 ³) | 239+240 _{P.I.} | 241 _{6m} | 137, | 60, | 2070.5 | 238. | | | |---|-------------------|---------------------------------------|-------------------------|-------------------|-----------|-----------|-------------------|--------------------|-----------------------|--------------------------| | Mullet - Neonmyxus | and in | () () | n.i | Am | \$J | 03. | £0′Bi | nd _{oc 2} | Other | | | | | | | | | | | | | | | Muscle | 0.244 | 11.9 (2 | 2.2 (6) | 0.50 (12) | 810 (2) | 1760 (1) | \$ | <.03 | 90 _S r | 2.0 (35) | | | 0.584 | | 27 (4) | 9.7 (7) | <20 | 450 (5) | <13 | 0.47 (26) | ار
906 | 211 (4) | | Stomach cont. | 0.567 | | 7130 (3) | 5700 (4) | (91) (19) | 800 (14) | 800 (14) 180 (28) | 56.3 (8) | | 4470 (3) | | Viscera | 0.457 | 3.2 (4) | 3350 (3) | 2130 (4) | (5) | 2220 (2) | 150 (6) | 22.6 (4) | | 2320 (3) | | | 0.551 | 5.3 (4) | 11.3 (7) | 3.6 (13) | 350 (5) | 1440 (2) | <7 < 7 | <0.04 | 90, | 164 (2) | | | 0.266 | 11.4 (6) | 11.4 (7) | | 690 (13) | 43800 (1) | 180 (25) | | 5 | 1 | | Muscle | 0.243 | 10.3 (2) | 1.1 (12) | 0.34 (12) | 247 (3) | 1000 (1) | <4 | 0.07 (80) | 306° | 2.2 (25) | | Bone 0.572 | | 21.5 (4) | 10.8 (5) | | | | ; | 0.07 (20) | 90° | 304 (2) | | Stomach cont. | 0.492 | | 5800 (2) | 14700 (6) | 270 (7) | 1160 (8) | 09> | 143 (4) | 906 | 500 (3) | | Viscera | 0.441 | 3.2 (4) | 6200 (5) | 8800 (5) | 410 (3) | 1690 (1) | 30 (21) | 150 (6) | 306 | 400 (2) | | | 0.558 | 12.8 (4) | 8.8 (7) | 4.5 (7) | 150 (12) | 2100 (2) | <7 | <0.1 | . 1506 | ⁹⁰ Sr 180 (2) | | | 0.278 | 11.3 (5) | 1030 (5) | 230 (4) | 170 (25) | 26600 (1) | <40 | 26.7 (17 | $^{90}_{\mathrm{Sr}}$ | 80 (31) | | | 0.247 | 11.9 (1) | | | 36 | 403 (2) | ° > | | | | | | 0.548 | 0.6 (23) | | | . 6> | 50 (22) | , 4 | | | | | Stomach cont. | 0.493 | 4.4 (16) | | | <40 | 430 (11) | <30 | | | | | Viscera | 0.466 | 3.0 (3) | | | 20 (22) | 380 (2) | 24 (11) | | | | | | 0.540 | 4.5 (3) | | | • | 320 (3) | ·
·
· | | | | | | 0.293 | | | |) | |) | | | | | 7299 B-17 Muscle | 0.241 | 8.9 (9) | | | < 50 | 5160 (2) | <40 | | | | | | 0.566 | 0.8 (19) | | | 6> | 210 (6) | | | | | | Stomach cont | 0.551 | 3 (36) | | | 380 (19) | 1100 (11) | _ | | | | | Viscera | 0.465 | 4.3 (4) | | | 116 (10) | 1420 (1) | (6) 66 | | 102mp. | (10) 10 | | | 0.526 | 5.1 (4) | | | 50 (22) | 600 (3) | 161 66 | | = | (+c) +7 | | | , | 10) 4 61 | | | | (2) 323 | | | | | Table A-4.
(Continued) | | | | | | | | pCi | pCi/kg dry weight ^a | F g | | | Ì | |--------------|-------------------|---------------------------------|-------------------|--|-----------------------|-------------------|-------------------|--------------------------------|--------------------|-------------------|----------------|---------| | Sample
ID | Island
locator | Tissue ^b | Ory/wet
weight | 40 _K
(×10 ³) | 239+240 _{Pu} | 241 _{Am} | 137 _{CS} | °°309 | 207 _{8 i} | 238 _{pu} | Other | | | Name: | Mullet - | Mullet - Neoxmyxus (cont'd | ont'd | | | | | | | | | | | 7305 | B-23 | Muscle
Bone | 0.232 | 10.9 (2) | 4.7 (3 | 4.7 (3) | (2) 36 | (1) 0771 | 19 (20) | 0.14 (13 | | | | 7307 | | Stomach cont. 0.709 | . 0.709 | 1.3 (22) | 5000 (20) | 2950 (3) | 190 (11) | 740 (4) | 490 (4) | 155 (4) | | | | 7308 | | Viscera | 0.426 | 2.3 (4) | 4100 (2) | 630 (3) | 160 (11) | 2680 (1) | 540 (2) | 140 (2) | | | | 7309 | | Skin | 0.559 | 4.6 (4) | 22 (5) | 4.6 (5) | 8* | 1780 (2) | 25 (20) | 0.7 (8) | | | | 7310 | | Liver | 0.291 | 11.4 (6) | 4110 (2) | 530 (7) | <50 | 35400 (1) | 570 (7) | 129 (2) | 108mAg | 80 (26) | | Name: | Surgeonfi | Surgeonfish - <u>Acanthurus</u> | <u>'us</u> | | | | | | | | | | | 9159 | B-1 | Muscle | 0.222 | 14.3 (3) | 5 (20) | 2.4 (28) | (1) 009 | 1050 (2) | <10 | <0.5 | | 26 (53 | | 0916 | | Bone | 0.642 | | 48 (7) | 11 (11) | <50 | <70 | <40 | 1.1 (67 | $^{90}_{Sr}$ 9 | 950 (3) | | 9161 | | Stomach cont. 0.220 | t. 0.220 | , | | | 6400 (19) | 4000 (63) | 006> | | | | | 9162 | | Viscera | 0.206 | 17 (7) | 1580 (3) | 310 (6) | 6750 (2) | 4700 (3) | 240 (2 | 0 (20 | 90sr 8 | 850 (4 | | 9163 | | Skin | 0.393 | (30) | | | 4600 (5) | (61) 059 | <80 | | | | | 9164 | | Liver | 0.231 | | | | 1400 (37) | 7200 (11) | <500 | | | | | 7257 | 8-5 | Muscle | 0.211 | 18.0 (1) | 0.6 (30) | 0.5 (27) | 1070 (1) | 260 (5) | <4 | 0,3 50 | 90sr | 6 (27 | | 7258 | | Bone | 0.471 | | 30 (7) | 7.3 (8) | 160 (13) | 8 (24) | <10 | <0.3 | | 10 (3) | | 7259 | | Stomach cont. 0.125 | . 0.125 | 21 (18) | 4810 (4) | 2840 (4) | <300 | <900 | <200 | 140 (14) | | 590 (5) | | 7260 | | Viscera | 0.143 | 16.4 (4) | | | 790 (7) | 4270 (2) | 70 (42) | | | | | 7261 | | Skin | 0.394 | 8 (8) | 25 (11) | (16) | 780 (6) | 470 (9) | <20 | <0 5 | 90sr 1 | 184 (4) | | 7262 | | Liver | 0.231 | 14 (24) | 320 (7) | 150 (6) | <200 | 8100 (5) | <200 | 11 (50 | | 09> | | 7352 | 9-8 | Muscle | 0.219 | 14.1 (2) | | | 760 (2) | 2 06 | \$3 | | | | | 7353 | | Вопе | 0.601 | 0.4 (32 | | | <7 | <10 | 9> | | | | | 7354 | | Stomach cont. 0.128 | . 0.128 | 25 (4) | | | 1220 (5) | (9) 00/1 | 150 (23 | | | | | 7355 | | Viscera | 0.141 | 19 (3) | | | 1050 (2) | 2320 (2) | (2) 101 | | | | Table A-4. (Continued) | | | ۷ | Ory/wet | 40 _K 3 | 046,066 | | 11 | pCi/kg dry weight ^d | 70 | | The second secon | |--|-------------------------|-------------|---------------------|-------------------|-----------------------|--------------------------------------|---------------------|--------------------------------|---------------------|-------------------|--| | Tissue weight | Tissue weight | , | (×10 ³) | | 239+240 _{Pu} | 241 _{Am} | 137 _{CS} | ^{و00} | 207 _{B i} | 238 _{pu} | 0ther | | Surgeonfish - Acanthurus (cont'd) | • | us (cont'd) | (1 | | | | | | | | Articular constant de l'altre que constant de l'altre que l'actual de l'altre que l'actual de | | B-6 Skin 0.410 8.1 (5) | 0.410 | | 8.1 (5) | _ | | | 690 (3) | (6) 091 | 6> | | | | Liver 0.259 15.2 (5) | 0.259 | • | 15.2 (5) | | 103 (4 | 13 (60) | 370 (11) | 3200 (4) | 400 (7) | 1.7 (27) | ^{108m} Ag 63 (19) | | B-10 Muscle 0.214 13.9 (2) | 0.214 | | 13.9 (2) | | 0.5 (20) | 0.1 (56) | 220 (4) | 120 (14) | < 3 | 0.12 (50) | ⁹⁰ Sr · 2.9 (27) | | Bone 0.592 | 0.592 | | • | | 33 (4) | 3.7 (9) | <7> | (21) 09 | <i>t></i> | 0.34 (43) | ⁹⁰ Sr 222 (3) | | Stomach cont. 0.188 16 (9) | 0.188 | 0.188 | , (6) 91 | | 800 (5) | 404 (5) | 260 (35) | 1350 (7) | 09> | 14 (34) | | | Viscera 0.173 6.0 (3) 2 | 0.173 6.0 (3) | 6.0 (3) | | 2 | 2080 (3) | 890 (3) | 76 (8) | (2) 069 | 38 (12) | 14 (7) | | | Skin 0.395 6.9 (3) | 0.395 6.9 (3) | 6.9 (3) | | | 20 (7) | 5.1 (11) | 138 (6) | 193 (6) | <5 | <0.2 | | | Liver 0.245 12 (15) 3 | 0.245 12 (15) | 12 (15) | | m | 310. (7) | 78 (10) | <100 | 3300 (5) | 440 (17) | 8 (50) | <30 | | B-12 Muscle 0.220 13.4 (1) | 0.220 | | 13.4 (1) | | | | 283 (2) | 104 (6) | \$ | | | | Bone 0.596 | | 0.596 | | | | | | , | | | | | cont. 0.189 | cont. 0.189 0.5 | 0.5 | 0.5 (22 | | | | <7> | <u></u> | <5 | | | | Viscera 0.177 17.3 (3) | 0.177 | | 17.3 (3) | | | | 390 (3) | 960 (2) | (6) (9) | | | | Skin 0.381 7.0 (2) | 0.381 | | 7.0 (2) | | | | (9) 7/1 | 135 (5) | 6> | | | | Liver 0.229 12 (11) | 0.229 | | 12 (11) | | | | < 70 | 2100 (5) | 09> | | | | B-13 Muscle 0.215 0 | 0.215 | | 0 | 0 | 0.27 (8) | ~ | | | | | | | Bone 0.593 11 | 0.593 | | 11 | Ξ | 11.5 (4) | | | | | 0.25 (22 | | | Stomach cont. 0.176 7.4 (30) 890 | cont. 0.176 7.4 (30) 8 | 7.4 (30) | ~ | 890 | 890 (2) | 360 (3) | <100 | 1000 (15 | <100 | 20 (12) | | | Viscera 0.198 10.2 (3) 560 | 0.198 10.2 (3) | 10.2 (3) | | 560 | 560 (4) | 770 (3) | 93 (13 | 1450 (2) | 108 (9) |)0 . 6 (5) | | | Skin 0.410 8.2 (3) 8 | 0.410 8.2 (3) | 8.2 (3) | | ∞ | 8.8 (7) | \$ 3 | 123 (8) | 180 (7) | <i>t></i> | 0.2 (70) | | | Liver 0.249 9.3 (14) 181 | 0.249 9.3 (14) | 9.3 (14) | (14) | 181 | 181 (3) | 40 (24) | <60 | 2750 (4) | 550 (10) | 2.5 (22) | | | Goatfish - Mulloidichthys | Mulloidichthys | 75 | | | | | | | | | | | B-1 Muscle 0.220 18.2 (2) 0
Bone 0.517 13 | 0.220 18.2 (2)
0.517 | 18.2 (2) | - | 0 | 0.84 (24)
13.7 (7) | 0.34 (21) 673 (3)
9.9 (9) 128 (16 | 673 (3)
128 (16) | 2600 (1)
930 (3) | 6180 (2)
780 (4) | <0.1
0.4 83 | ⁹⁰ Sr 15.6 (5)
⁹⁰ Sr 2030 (3) | | | | | | | | | | | | | • | Table A-4. (Continued) | | ler | 1 | | ⁹⁰ Sr 47 (13) | 350 (2) | 90 (46) |--------------------------------|--
--|---------------------|--------------------------|----------|--------------------|----------|-----------|---------------------|-----------|----------|-----------|----------|----------|---------------------|-----------|---------|-----------|----------|----------|---------------------|----------|--------|------| | | 0ther | | | $90_{\rm Sr}$ | 90sr 1 | .90 _S r | 238 _{Pu} | | | 7.5 (13) | 90*> | 27 (20) | æ | 207 _{B i} | | 5500 (11) | 820 (2) | 1740 (2) | 12800 (2) | 400 (8) | (82) (98) | | (6) 096 | 153 (6) | 750 (13) | 81 (4) | 6> | <400 | 200 (11) | 40 (15) | 210 (25) | 103 (3) | 18 (27) | <300 | 150 (14) | 110/00 | 7 00 | | pCi/kg dry weight ^a | °3 ₀₉ | | 18500 (1) | 22300 (4) | 3030 (2) | (1) 00020 | 1650 (2) | 490 (4) | • | 51700 (1) | 2680 (1) | 71300 (1) | 300 (3) | 100 (13) | <500 | (2) 06899 | 460 (3) | 11300 (2) | 192 (3) | <10 | 009> | 2770 (2) | <10 | ? | | pCi/ | 137 _{Cs} | | < 700 | 430 (13) | | 450 (18) | 230 (4) | <20 | | 400 (33) | (92) 09 | <200 | 95 (6) | 90 (12) | < 400 | 140 (23) | 27 (26) | <70 | (9) 59 | <7 | <400 | <30 | <7 | | | | 241 _{Am} | | | 197 (4) | 4.9 (9) | 450 (18) | 239+240 _{pu} | and the second s | | 293 (3) | 8.5 (9) | 730 (5) | - | ⁴⁰ k
(×10 ³) | (P. | | 4.9 (11) | 5.7 (4) | 21,8 (3) | | | | 14.8 (6) | 7.1 (3) | 20.6 (7) | 18.9 (1) | 0.7 (26) | | 15.1 (4) | 6.9 (3) | 14.3 (8) | 17.6 (1) | 0.7 (19) | | 16.8 (4) | | | | | Dry/wet
weight | thys (cont | t. 0 195 | 0.251 | 0.551 | 0.240 | 0.225 | 0.544 | 0.278 | 0.244 | 0.531 | 0.269 | 0.219 | 0.505 | . 0.177 | 0.251 | 0.547 | 0.257 | 0.213 | 0.514 | . 0.208 | 0.214 | 0.513 | | | | . Tissue ^b | - Mulloidichthys (cont'd) | Stomach cont, 0 195 | Viscera | Skin | Liver | Muscle | Bone | Stomach cont. 0.278 | Viscera | Skin | Liver | Muscle | Bone | Stomach cont. 0.177 | Viscera | Skin | Liver | Muscle | Bone | Stomach cont. 0.208 | Viscera | Skin | | | | Island
locator | Goatfish - | 8-1 | | | | 8-5 | | | | | | 9-8 | | | | | | B-10 | | | | | | | | Sample
ID | Name: | 9123 | 9124 | 9125 | 9126 | 7251 | 7252 | 7253 | 7254 | 7255 | 7256 | 7370 | 7371 | 7372 | 7373 | 7374 | 7375 | 7263 | 7264 | 7265 | 7266 | 7267 | | Table A-4. (Continued) | | | | | | | | pCi/k | pCi/kg dry weight ^a | | | | |--------------|-------------------|--------------------------|--------------------|-------------------------------------|-----------------------|-------------------|-------------------|--------------------------------|--------------------|-------------------|--| | Sample
ID | Island
locator | Tissue ^b | Dry/wet
weight | 40 _K (×10 ³) | 239+240 _{pu} | 241 _{Am} | 137 _{Cs} | °2 ₀₉ | 207 _{B i} | 238 _{Pu} | Other | | | ; | ייבויסיאורוויתואס לרחוור | יוושין <u>כנוו</u> | ם | | | | | | | | | 7200 | B-12 | Muscle | 0.222 | 16.6 (1) | <.03 | 0.05 (43) | (8) 98 | 430 (2) | 106 / 301 | Ç | | | 7201 | | Bone | 0.521 | 0.8 (20) | 3.3 (12 | 1.5 (11) | <10 <10 | 70 (28) | (7) (6) | <0.08
<0.06 | 5r 1.9 (18) | | 7202 | | Stomach cont. 0.203 | . 0.203 | | 150 (30) | 55 (41) | <500 | <800 | 7+7) 00 | 30.05 | 3r 240 (3)
90 ₅ 200 (52) | | 7203 | | Viscera | 0.291 | 12.1 (5) | 264 (4) 0 | 143 (5) | 100 (34) | 3880 (2) | 410 (6) | 4 (25) | 90,5r 79 (8) | | 7204 | | Skin | 0.512 | 7.2 (3) | 1.5 (1 | 1.5 (10) | 30 (27) | 520 (3) | (6) 89 | <0.1 | | | 7205 | | Liver | 0.249 | 20 (16) | | | <200 | 8620 (5) | 370 (30) | • | | | 7206 | B-13 | Muscle | 0.219 | | | | | | | | | | 7207 | | Bone | 0.505 | | 3.2 (7) | | | | | | | | 7208 | | Stomach cont. | | 25 (37) | 9 (40) | 25 (30) | <500 | 3500 (20) | 000 | 0.09 (75) | | | 7209 | | Viscera | 0.210 | 18.7 (4) | 28 (4) | 12 (70) | <40 | 630 (5) | 1010 (4) | (00) | | | 7210 | | Skin | 0.537 | 6.9 (2) | 1.90 (3) | | 20 (37) | 540 (3) | 220 (6) | 0.07 (35) | | | 7211 | | Liver | 0.230 | 22 (9) | 171 (3) | 56 (8) | <100 | 14200 (4) | (6) 0801 | 8.2 (16) | | | 7281 | 8-17 | Muscle | 0.229 | 15.1 (2) | 0.32 (23) | 0 13 (31 | 7) (1 | 150 (2) | (6) 000 | 17 (46) | 14/11 306 | | 7282 | | Bone | 0.548 | 0.5 (32) | 7.3 (8) | 4.4 (7) | 6> | 230 (27) | 230 (5) | 0.7 (30) | 90cr 1000 (2) | | 7283 | | Stomach cont. 0.364 | 0.364 | | 178 (16) | (91) 08 | <400 | 5000 (24) | <400 | <10 | 90° × 300 | | 7284 | | Viscera | 0.361 | | 1690 (4) | 530 (4) | 346 (10) | (1) 0069 | (3) | 226 (4) | 90s, 1900 (3) | | 7285 | -, | Skin | 0.448 | 5.1 (11) | 7.6 (8) | 2.7 (8 | (31) | 1080 (3) | | 0.8 (30 | 90, cm (3) | | 7286 | _ | Liver | 0.220 | 17.6 (17) | 400 (6) | 137 (8) | <200 | 27400 (1) | 2930 (6) | 30 (21) | 90 _{Sr} 60 (90) | | 7311 | B-23 P | Muscle | 0.214 | 18.3 (1) | | | 225 (6) | 800 (1) | 2800 (1) | | | | 7312 | | Bone | 0.485 | 0.5 (27) | | | <10 | 710 (3) | 480 (3) | | | | /313 | -• | Stomach cont. 0.214 | 0.214 | | | | <700 | 12200 (8) | <700 | | | | 7314 | - (| Viscera | 0.217 | 16.4 (4) | | | 110 (42) | 31300 (1) | 5690 (2) | | | | 7315
7316 | ·/ _ | Skin
Liver | 0.545 | 6.9 (3) | | | 50 (23) | 2640 (2) | 1070 (2) | | | | | | | <i>i</i> | | | | | | | | | | Sample
IO | Island
locator | . Tissue ^b | Dry/wet
weight | ⁴⁰ _K (×10 ³) | 239+24N _{Pu} | 241 _{Am} | 137 _{Cs} | °209 | 207 _{8 i} | 238 _{Pu} | Other | |--------------|-------------------------|-----------------------|-------------------|--|-----------------------|-------------------|-------------------|------------|--------------------|-------------------|--| | Name: P. | Name: Parrotfish | - Scarus | | | | | | | | | | | 7287 | 8-17 | Muscle | 0.209 | 17.6 (1) | | | 670 (2) | 6 -16 | 64 | | | | 7288 | | Bone | 0.589 | 1.42 (9) | | | 8> | <10 | <5 | | | | 7289 | | Stomach cont. | 0.541 | | | | <200 | 400 (26 | 06> | | | | 7290 | | Viscera | 0.524 | 5.4 (5) | | | 186 (6) | 290 (8) | 18 (27) | | | | 7291 | | Skin | 0.467 | 5.6 (5) | | | 163 (7) | 340 (5) | 6> | | | | 7292 | | Liver | 0.491 | 3.8 (7) | | | 120 (16) | 500 (4) | <10 | | | | Name: S | Snapper - <u>Aprion</u> | Aprion | | | | | | | | | | | 7328 | Bravo | Muscle | 0.233 | | 0.47 (10) | 0.15 (15) | | | | 0.04 (75) | ⁹⁰ sr 1.0 (20) | | 7329 | Crater | Bone | 0.653 | 1.3 (8) | (9) 6.8 | 4.9 (5) | 46 (17) | 23 (65 | 730 (2) | <.04 | $\frac{90}{3}$ sr 205 (3) | | 7330 | | Stomach cont. | | 14 (42) | 130 (18) | (11) 06 | <300 | 8830 (6) | 1300 (22) | <10 | ⁹⁰ Sr <100 | | 7331 | | Viscera | 0.346 | 3.2 (4) | 19.3 (5) | 9.1 (7) | 160 (8) | 5460 (1) | 1520 (2) | 0.4 (45) | ⁹⁰ Sr <3 | | 7332 | | Skin | 0.547 | 6.8 (5) | 19.7 (5) | 12.4 (6) | 390 (5) | 590 (4) | 1640 (2) | <0.1 | ⁹⁰ Sr 127 (3) | | 7333 | | Liver | 0.277 | 13.4 (9) | 162 (4) | 148 (6) | 700 (22) | 127000 (1) | 9370 (2) | 2.6 (41) | ⁹⁰ Sr <20 | | 7340 | W of | Muscle | 0.217 | 18.5 (1) | 0.3 (25) | <0.3 | 230 (4) | 380 (4) | 50 (10) | | | | 7341 | B-6 | Bone | 0.671 | 1.0 (19) | 11.9 (5) | | <10 | 100 (11) | 6> | 0.14 (55) | | | 7342 | | Stomach cont. 0.0747 | 0.0747 | | <20 | <20 | 009> | 4000 (24) | <600 | | | | 7343 | | Viscera | 0.257 | 7.8 (4) | 92 (4) | (91) 09 | (27) | 4270 (1) | (91) 08 | 1.8 (25) | (53) 00000 (53) | | 7344 | | Skin | 0.568 | | (8) 09 | | 50 (42) | <10 | 6> | 2 (50) | r | | 7345 | | Liver | 0.247 | (01) 91 | 140 (12) | 480 (20) | <100 | 32200 (1) | (11) | (06) 9 | ^{3m} Cd 1.2×10 ^b (17 | | 7346 | 0ff | Muscle | 0.204 | 20.7 (2) | | | 720 (3) | 1010 (2) | 1620 (2) | | | | 7347 | B-23 | Bone | 0.647 | | 1.7 (22) | | 9> | 9> | (> | | | | 7348 | | Stomach cont. 0.0945 | 0.0945 | | | | <450 | 5600 (11) | <400 | | C | | 7340 | | | 1 | | | | | 107 0000 | | 1000 | 11. 00. | Table A-4. (Continued) | Drv/wet ⁴⁰ K | H | | | 1 | | | | | | |-------------------------|---------------------|-----------------------|-------------------|---------------------|----------------------|---------------------
-------------------|--------------------|-----------------------------| | ory/wer
weight | (x10 ³) | 239+240 _{Pu} | 241 _{Am} | . 137 _{Cs} | ^{0ე} 09 | 20781 | 238 _{Pu} | Other | <u>s.</u> | | | | | | | | | | | | | 0.559 | 3.0 (12)
10 (24) | 2.2 (15) | 2.4 (25) | 100 (16) | 870·(3)
68300 (1) | 180 (6)
4800 (5) | 1.0 (30) | 90 _S r | ⁹⁰ Sr 180 (4) | | | • | · | | | | | | | | | 0.242 | 18.0 (2) | | | 1060 (2) | 1340 (2) | 500 (2) | | | | | | | 1.8 (12) | 1.6 (38) | <10 | <20 | 30 (36) | 1.0 (23) | 90_{Sr} | 98 (3) | | Stomach cont. 0.123 45 | 45 (28) | | | <700 | 11300 (8) | < 500 | | | | | 0.209 16. | 16.2 (6) | 54 (9) | 34 (14) | 780 (10) | 11800 (2) | 570 (11) | 2.7 (50) | 90sr
90c | <8 | | | 14 (26) | | | < 200 | 9460 (4) | 850 (20) | 7.00 | ก | (/) 731 | | | | | | | | | | | | | 0.236 19 | 19.9 (1) | | | 334 (3) | 227 (5) | 17 (25) | | | | | 0.572 | 1.2 (20) | 0.6 (50) | 0.8 (31) | <10 | 40 (30) | < 10 | <0.2 | $^{90}_{Sr}$ | 36 (10) | | Stomach cont. 0.168 | | | | 009> | < 500 | <500 | | | | | 0.243 15 | 15.5 (6) | - | | 170 (24) | 2580 (3) | 3900 (3) | | 108m _{A9} | ^{108m} Ag 160 (16) | | 0.364 11 | 11.6 (4) | 3.8 (21) | 4 (29) | 230 (13) | 530 (6) | < 17. | <0.5 | 90_{Sr} | 6> | | 0.285 | 18 | | | <200 | (7) 0009 | 1500 (12) | | | | a Number in parenthesis is the 1 σ counting error expressed as percent of the value listed. b Viscera sample for all of the 1978 collection includes the stomach but does not include: the stomach contents, intestines or reproductive organs Table A-5. 1980 Fish collections - Bikini Atoll | Male Female | 7 3 11 11 | |---|---| | Male | 4 4 15 | | Average
standard
length
(mm) | 286
331
198
500 | | Average
whole body
wet wt
(gm) | 634
923
157
2767 | | Number of
individuals
pooled/sample | 14
7
39
1 | | Scientific Name | Crenimugil crenilabis Crenimugil crenilabis Mulloidichthys samoensis Letherinus kallopterus | | Common name | Mullet
Mullet
Goatfish
Snapper | | Island Month
locator collected | September
September
September
September | | Island
locator | 8-6
8-6
8-6
8-6 | Table A-6. 1980 Concentrations of radionuclides in fish tissue - Bikini Atoll. | | | | | | | pCi/kg dry weight ^a | ghta | | | | |--------------------------------------|--|-----------------------------|--|-----------------------|-------------------|---------------------------------|---------------------------------|-------------------------|-------------------|----------------------------| | Sample Island
ID Locator | i
r Tissue | Dry/Wet
weight | 40 _k
(×10 ³) | 239+240 _{Pu} | 241 _{Am} | 137 _{Cs} | °209 | 207 _{8 i} | 238 _{Pu} | Other | | Name: Mullet -
MSA 372 B-6
373 | Crenimugil
Muscle
Bone | .503 | 13.1 (2) | 0.43 (14) | | 200 (3) | (1) | > 3 | | | | 374
375
376 | Gizzard Cont.
Gizzard | | 4.1 (30) | | | | | | | | | 378
377
379
380 | Liver
Intest. Cont.
Scales
Skin | 0.281
it. 0.487
0.611 | 3.5 (12) | | | 530 (7) | 760 (2) | < 20 | | | | MSA 848 B-6 | Muscle | 0.256 | 14.6 (2) | | | 414 (4) | 873 873 (3) | 3) | < 5 | | | 849
850
851 | Bone
Gizzard Cont.
Gizzard | 0.393
t. 0.632 | 11 2 (11) | 4000 (4 | | 314 (27) | 380 (16) | 09 > | 22 (4) | ¹⁵⁵ Eu 600 (18) | | 852
853 | Liver
Viscera | 0.265 | | 720 (2) | | 290 (40)
352 (8) | 10840 (3)
1840 (2) | <100
<100
37 (30) | 11 (7) | ¹⁵⁵ Eu 430 (15) | | 854
855
856 | Intest. Cont.
Scales
Skin | t. 0.558
0.670
0.412 | 2.5 (20)
2.5 (9)
5.4 (15) | | | 418 (13)
50 (34)
140 (27) | 699 (5)
557 (3)
2425 (15) | < 25 < 12 < 33 | | ¹⁵⁵ Eu 570 (14) | | Name: Goatfish - Mulloidichthys | - Mulloidich | thys | | | | | | | | | | MSA 841 B-6
842 | Muscle
Bone | 0.234 | 17.0(2) | | | 52 (14)
< 25 | 134 (8) | 80 (7) | | | | 843
844 | Intest. Cont.
Viscera | t. 0.586
0.278 | 5.1 (35) | 213 (2)
66 (2) | | <140
< 19 | 340 (37)
850 (4) | <115
94 (14) | 1.1 (13) | | | 845
846
847 | Liver
Scales
Skin | 0.254
0.606
0.343 | 15 (17)
3.7 (7)
10.2 (10) | 138 (3) | | <180 < 15 < 50 < | 3118 (8)
99 (15)
352 (16) | | 1 5 (30) | | Table A-6. (Continued). | | | | | | 1 | pCi/kg dry weight ^a | ight ^a | | | | |-------------------|------------------------------------|--|------------------------------|---|-------------------|--------------------------------|-------------------|--------------------|-------------------|-------| | Island
Locator | Sample Island
ID Locator Tissue | Ory/Wet $40_{\rm K}$
weight $(x10^3)$ | ⁴⁰ k ₃ | 239+240 _{pu} 241 _{Am} | 241 _{Am} | 137 _{C s} | 0009 | 207 _{8 i} | 238 _{Pu} | 0ther | | napper - | name: Snapper - Letnerinus | | | | | | | | | | | MSA 164 B-6 | Muscle | 0.234 | | | | | | | | | | | Bone | 0.540 | 1.1 (20) | | | <20 | <20 | < 20 | | | | | St. contents | | | | | | | | | | | | Viscera | 0.262 | 7.1 (9) | | | 89 (37) | 2080 (3) | 160 (18) | | | | | Skin | 0.518 | 7.6 (22) | | | . 08> | 132 (40) | , i 09> | | | | | Liver | 0.338 | | | | | , | | | | | | Muscle | 0.234 | 19.7 (2) | <0.02 | | 300 (8) | 160 (12) | 130 (9) | | | | | Muscle | | 19.4 (3) | <0.05 | 0.14 (50) | 0.14 (50) 270 (10) | 150 (26) | 150 (10) | | | a Numbers in parenthesis are the lσ counting error expressed as percent of listed value. Table A-7. 1981 Fish collections - Bikini Atoll. | Female | , | ۷ - ۷ | o ec | | • | 12 | 18 | 2 | - | |---|-----------------------|-----------------------|-----------------------|--------------------|--------------------|-----------------------|--------------------------|-----------------|----------------------------| | Маје | y | o - | . 0 | 25 | | 16 | 22 | _ | ō | | Average
standard
length
(mm) | 320 | 336 | 391 | 217 | 231 | 114 | 189 | 267 | 490 | | Average
whole body
wet wt
(gm) | 714 | 911 | 1314 | 176 | | 97 | 126 | 695 | 1113 | | Number of
individuals
pooled/sample | 14 | 7 | œ | 38 | 23 | 33 | 44 | ĸ | _ | | Scientific name | Crenimugil crenilabis | Crenimugil crenilabis | Crenimugil crenilabis | Neomyxus chaptalii | Neomyxus chaptalii | Acanthurus triostegus | Mulloidichthys samoensis | Scarus sordidus | Grammatorcynus billineatus | | Соптол пате | Mullet | Mullet | Mullet | Mullet | Mullet | Surgeonfish | Goatfish | Parrotfish | Mackerel | | Island Month
locator collected | February | Island
locator | 8-1 | 8-5 | ß-6 | ς.
φ. | 8-13 | | Б-5
г | | Lagoon | Table A-8. 1981 Concentrations of radionuclides in fish tissue - Bikini Atoll. | | 0ther | | | | | | | | | | | | | | | | | | |--------------------|--|--------------------|-----------------------------------|--------------------------|----------------|-------------|----------|----------|---------------------|-----------|-------------|---------|---------------|---------|----------|----------|-----------|----------| | | 238 _{Pu} | 0.045 (40) | 37 (25) | | | | | | | | 0.02 (75) | | 25.7 (2) | | | | | | | | 207 _{B i} | < 4 | <2100 | | | <5 | <20 | 120 (9) | <9
<30 | <200 | 4 | <20 | 70 (26) | 30 (13) | <20 | 4 | 200 (33) | <30 | | tα | ^{0ე} 09 | 877 (2) | 5300 (48) | | | 610 (2) | 150 (13) | 2490 (2) | 290 (5)
1800 (4) | 25900 (2) | 510 (2) | 230 (9) | 230 (13) | 570 (2) | 1110 (4) | 199 (3) | 15700 (3) | 1460 (3) | | pCi∕kg dry weightª | 137 _{Cs} | (3) | < 3000 | | | 1200 (2) | <3 | 1450 (2) | 300 (6)
990 (6) | 1200 (23) | 10) 234 (4) | <20 | 230 (16) | 131 (6) | 120 (21) | 20 (20) | 700 (15) | 220 (20) | | | 241 _{Am} | | | | | | | | | | 0.14 (10) | | | | | | | | | | 239+240 _P u | 2.8 (6) | 6200 (20) | | | | | | | | 0.86 (10) | ٠ | 4430 (3) | | | | | | | | ⁴⁰ K
(×10 ³) | 13.7 (2) | | | | 12.3 (2) | 0.8 (37) | 5.4 (4) | 3.7 (6)
6.0 (13) | 9 (34) | 14.2 (2) | | 1.5 (24) | | | | | 9.0 (11) | | , | Dry/wet
weight | 0.253 | 0.305 | 0.191 | 0.598 | 0.284 | 0.681 | 0.364 | 0.333 | 0.249 | 0.255 | 0.561 | 0.617 | 0.379 | 0.337 | 0.662 | 0.257 | 0.220 | | | . Tissue | Muscle
Bone | Gizzard cont.
Gizzard
Liver | Viscera cont.
Viscera | Scales
Skin | Muscle | Bone | Viscera | scales
Skin | Liver | Muscle | Bone | Stomach cont. | Viscera | Skin | Scales | Liver | Gizzard | | | Sample Island
ID locator | MSA 356 B-1
357 | 358
359
360 | 361
362 | 363
364 | MSA 186 B-5 | 187 | 188 | 190 | 191 | MSA 253 B-6 | 254 | 255 | 256 | /67 | | | 260 | Table A-8. (Continued) | | | | | | pCi, | pCi/kg dry weight ^a | hta | | | | |--|--|--|--|--------------------------------|--|--|--|--|-------------------|-------| | Sample Island
ID locator | or Tissue | Dry/wet
weight | 40 _K
(×10 ³) | 239+240 _{Pu} | 241 _{Am} | 137 _{Cs} | °0009 | 207 _{B i} | 238 _{pu} | Other | | NSA 401 B-6
402
409
406 | Muliet - Neomyxus 1 B-6 Muscle Bone Liver Viscera | 0.238
0.535
0.218
0.367 | 0.9 (30) | 0.97 (4)
850 (2)
940 (3) | | (127 0) | 370 (8) | 9> | 14 (16) | | | NSA 530 B-13
403
405 | Muscle
Gizzard cont.
Gizzard | 0.265
0.563
0.494 | 11.5 (2) | 2200 (1)
1800
(1) | | 43 14 | 17 8 | \$ | 19 (4)
14 (4) | | | Name: Surgeont | Hame: Surgeonfish - <u>Acanthurus</u> | νI | | | | | | | | | | MSA 224 B-5
225
226
227
228
229
Name: Goatfish | MSA 224 B-5 Muscle 225 Bone 226 Stomach cont. 227 Viscera 228 Skin 229 Liver | 0.222
0.570
0.188
0.159
0.464 | 14.1 (4)
12 (35)
17.2 (7)
7.3 (10) | 0.97 (8) | 0.68 (18) 1440 (3) <30 2640 (2) <400 1560 (10 500 (12 <500 | 1440 (3)<30<4001560 (10)500 (12)<500 | 460 (7)
150 (16)
5780 (13)
7780 (2)
470 (4)
11900 (5) | <20
<20
<200
130 (36)
<30
1200 (24) | 0.02 (90) | | | MSA 233 B-5
234
235
236
237
238
239 | Muscle
Bone
Stcontent
Viscera
Scale
Skin
Liver | 0.232
0.491
0.484
0.269
0.312
0.264 | 16.5 (2)
4 (37)
13 (9)
3.2 (10)
9.6 (8)
12 (22) | 1.22 (5) | 0.55 (6) | 360 (5) <20 750 (20) 600 (19) <20 240 (22) | 1860 (2)
870 (5)
9200 (3)
21800 (1)
970 (3)
3870 (2) | 240 (4)
45 (3)
500 (18)
540 (12)
40 (28)
120 (25)
<200 | 0.07 (32) | | Table A-8. (Continued) | | Other | | | |--------------------------------|---------------------------------------|--|--| | | 238 _{pu} | 0.04 (45) | | | | 207 _{B i} | <20
<30
120 (23)
<100
<90
<20. | 30 (32)
<70
<300
<100 | | ıta | 0009 | 190 (14)
140 (21)
1570 (4)
3200 (6)
560 (20)
270 (18)
1140 (22) | 270 (7)
<90
4500 (9)
620 (19) | | pCi/kg dry weight ^a | 137 _{Cs} | 0.37 (16) 1080 (4) <30 960 (6) 1620 (10) 800 (15) 260 (13) <200 | 420 (5)
<90
<400
<200 | | | 241 _{Am} | 0.37 | | | | 239+240 _{pu} | 1.38 (7) | (2) 0.09 (35) | | | t 40 _K (×10 ³) | 19.3 (3)
1.8 (29)
3.4 (24)
9.7 (27)
15 (16)
3.0 (15) | 20.4 (2) | | | Dry/wet
weight | 0.216
0.465
0.429
0.491
0.252
0.532
0.515 | 0.236
0.465
0.253
0.353 | | | Tissue | h - <u>Scarus</u> Muscle Bone Stomach cont. Viscera Skin Scales Liver | Muscle
Bone
Viscera
Skin | | | Sample Island
IO locator | Mame: Parrotfish - <u>Scarus</u> MSA 240 B-5 Muscle 242 Bone 243 Viscera 244 Skin 245 Scales 246 Liver Name: Mackerel - Grammatorcynus | MSA 247 Lagoon Muscle
248 Bone
250 Viscera
251 Skin | ^a Number in parenthesis are the l σ counting error expressed as percent of listed value. Table A-9. 1982 Fish collections - Bikini Atoll. | Female | 1 | |---|--| | Male | 12 17 | | Average
standard
length
(mm) | 223
232
1070
454 | | Average
whole body
wet wt
(gm) | 199
243
2020 | | Number of
individuals
pooled/sample | 33 | | Scientific name | Neomyxus chaptalii
Neomyxus chaptalii
Caranx melanpygus
Caranx melanpygus | | Сопипол папе | Mullet
Mullet
Ulua
Ulua | | Month
collected | March
June
June
September | | Island | B-6
B-5
B-22
B-22 | Table A 10 1982 Concentrations of radionuclides in fish tissue - Bikini Atoll. | | | | | | | pCi∕kg dry weight⁴ | weight ^a | | | | | |---|--|--|--|--------------------------------------|--|--------------------|--|---|--------------------|---|---| | Sample
ID | Island
locator | Tissue | Dry/wet
weight | 40 _K (×10 ⁻³) | 239+240 _{p u} | 241 _{Am} | 137 _{Cs} | 0009 | 207 _{B i} | 238 _{Pu} | 210 _{po} | | MSG 363
365
365
366
366
368
369
371 | 9-9 | Musele
Bone
Gizzard cont.
Gizzard
Viscera
Viscera
Scale
Skin
Liver | 0.222
0.514
0.535
0.222
0.228
0.278
0.633
0.359 | 13.6 (2)
9.2 (13)
3.0 (8) | 1.40 (2)
8.7 (3)
1620 (2)
1440 (2)
740 (2) | 600 (13) | 94 (8)
600 (20)
<90
720 (14) | 231 (6)
99 (17)
340 (19)
240 (9) | <4
40(25) | 0.13 (30)
11 (11)
10.8 (8)
4.9 (7) | 1370 (3)
3800 (3)
1500 (4)
5900 (3)
750 (2) | | 373
373
374
375
376
377
378
378
378 | 8-5 B-5 A-6 B- | Muscle
Bone
Gizzard cont.
Gizzard
Viscera cont.
Viscera
Scales
Skin | 0.226
0.513
0.338
0.224
0.248
0.241
0.619 | 13.2 (2)
3.4 (37)
5.4 (15) | | 14 (5)
8.2 (10) | 300 (3) <20 4 (5) 810 (24) 8.2 (10) 510 (15) | \$90 (2)
122 (16)
1120 (14)
1490 (5) | 4 | | | Table A-10. (Continued) | | 210 _{p0} | | | |--|--|--|---------------------------| | | 238 _{pu} | | | | | 207 _{8 i} | 490 (10)
230 (11)
526 (4)
4120 (3)
8150 (4)
870 (5)
1610 (10)
<400 | 166 (5) | | | °2 ₀₉ | 215 (4)
330 (10)
1560 (2)
36520 (1)
4000 (9)
1700 (4)
2710 (8)
2220 (17)
1740 (12) | 246 (5)
326 (15) | | weight | 137 _{Cs} | 1670 (4) 330 (12) 420 (7) 240 (40) <300 473 (28) | 1640 (2)
970 (8) | | pul/kg dry weight" | 241 _{Am} | · | | | The second secon | 40 _K
(×10 ³) 239+240 _{pu} | 20.4 (3) 4.3 (12) 6.8 (7) 8.9 (16) 12 (43) 8.7 (11) 7 (40) 4.6 (30) | 13.8 (2
7.1 (12) | | 11 |
Dry/wet 4
weight (| 0.227
0.452
0.215
0.265
0.260
0.213
0.190
0.198 | 0.22
0.24
0.29 | | | Tissue | Muscle
Skin
Stomach lin.
Liver
Spleen
Pyloric caeca
Gonad
Viscera cont. | Muscle
Viscera
Skin | | | Sample Island
ID locator | B-22 Muscle Skin Stomach Liver Spleen Pyloric Gonad Viscera | B-22 Mt | | | Sample
ID | MSA 967
968
969
970
971
972
973
974 | MSG 421
423
426 | a Numbers in parenthesis are the lσ counting error expressed as percent of listed value. Table A-12. 1983 Concentrations of radionuclides in fish tissue - Bikini Atoll. | 15 and | | | | | | | | pCi/kg dry weight | weight | | | ! | | |--|--|-------------------|----------------|--|---------------|-----------------------|-------------------|-------------------|--------------------|-------------------|-------------------|---------------------|----------------------| | Hullet - Crenimugil | Sample
ID | Island
locator | | Ory/wet
weight | 40k
(×10³) | 239+240 _{Pu} | 137 _{Cs} | 60 _C 0 | 207 _{B i} | 238 _{Pu} | 210 _{pb} | 210 _{8 i} | 210 _{Po} | | B-1 Muscle | Name: | Mullet . | | Amening to the second of s | | | | | | | | | | | 9 Viscera 0.230 12.9 (6) 660 (8) 780 (5) 8 5 B-5 Muscle 1 Liver Mullet - Neomyxus 1 B-1 Muscle Liver Liver Surgeonfish - Acanthurus Surgeonfish - Acanthurus Surgeonfish - Acanthurus 1 B-1 Muscle Viscera 0.182 12.4 (5) 1210 (3) 2000 (2) 240 (9) Liver 0.205 | MSG 561 | 8-1 | Muscle | 0.220 | | 0.27 (19 |) 540 (2) | 310 (26) | | | | | 160 (3) | | 8 8-5 Muscle Mullet - Neomyxus Mullet - Neomyxus 1 B-1 Muscle Liver Liver Liver Surgeonfish - Acanthurus Acathurus Surgeonfis | 569
MCH 117 | - | Viscera | 0.230 | _ | | (8) 099 | 780 (5) | | | | | | | 8 B-5 Muscle Mullet - Neomyxus I B-1 | / II | - 2 | Liver | | | | | | | | 150 (13) | 950 (7) | 3800 (3) | | #ullet - Neomyxus #ullet - Neomyxus #ullet - Neomyxus #ulver Liver Liver Surgeonfish - Acanthurus #uscle | MSH 115 | 8-5 | Muscle | | | | | | | | ~
\ | | (6) 531 | | Mullet - Neomyxus 1 B-1 | 118 | | Liver | | | | | | | | 140 (20 | | 126 (3)
5200 (3) | | Eliver Liver Surgeonfish - Acanthurus Surgeonfish - Acanthurus Surgeonfish - Acanthurus Skin 0.224 16.0 (2) 2060 (1) 150 (6) 17 (31) Skin 0.348 8.2 (7) 840 (5) 340(8) 430 Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) Stomach cont. 0.146 <20 2200 (3) Stomach cont. 0.147 1280 (2) Stomach cont. 0.147 1280 (2) Intest. cont. 0.147 1280 (2) Stomach cont. 0.147 1280 (2) Skin 0.340 6.8 (12) Skin 0.340 6.8 (12) | √ame: Μι | ıllet - N | eomyxus | | | | | | | | | | | | Surgeonfish - <u>Acanthurus</u> Surgeonfish - <u>Acanthurus</u> B-1 Muscle 0.224 16.0 (2) 2060 (1) 150 (6) 17 (31) Skin 0.348 8.2 (7) 840 (5) 340(8) <30 12.4 (5) 12.4 (5) 12.0 (3) 2000 (2) 240 (9) Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) Stomach cont. 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 3.6 (6) 8 (32) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Skin 0.340 6.8 (12) 980 (35) 3600 (22) Skin 0.340 6.8 (12) 980 (35) 3600 (35) 270 (37) Skin 0.340 6.8 (12) | 1SH 113 | B-1 | Muscle | | | | | | | | 101 96 | (0) | 000 | | Surgeonfish - <u>Acanthurus</u> i B-1 Muscle 0.224 16.0 (2) 2060 (1) 150 (6) 17 (31) Skin 0.348 8.2 (7) 840 (5) 340(8) <30 Viscera 0.182 12.4 (5) 1210 (3) 2000 (2) 240 (9) Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) B-1 Muscle 0.222 14.9 (2) 0.68 (5) 1830 (2) 200 (7) <10 Viscera 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 Stomach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Skin 0.340 6.8 (12) 480 (5) 230 (7) Skin 0.340 6.8 (12) | 116 | | Liver | | | | | | | | 330 (3) | 200 (8)
7500 (4) | 280 (3)
10400 (1) | | 8-1 Muscle 0.224 16.0 (2) 2060 (1) 150 (6) 17 (31) Skin 0.348 8.2 (7) 840 (5) 340(8) <30 Viscera 0.182 12.4 (5) 1210 (3) 2000 (2) 240 (9) Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) Wiscera 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 Stomach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Skin 0.340 6.8 (12) 480 (5) 220 (7) 220 (7) Skin 0.340 6.8 (12) | lame: Sı | urgeonfis | h - Acanthurus | 1 | | | | | | | | | | | Skin 0.348 8.2 (7) 840 (5) 340(8) <30 Viscera 0.182 12.4 (5) 1210 (3) 2000 (2) 240 (9) Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) Wiscera 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 Stomach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Bone 0.499 <30 1840 (1) 2800 (5) 270 (7) Skin 0.340 6.8 (12) | 515 951 | B-1 | Muscle | 0.224 | 16.0 (2) | | 2060 (1) | 150 (6) | 17 (31) | | | | | | Hiver 0.205 <10 800 (35) 4200 (2) 240 (9) Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) | 517 | | Skin | 0.348 | 8.2 (7) | | 840 (5) | 340(8) | <30 <> | | | | | | Liver 0.205 <10 800 (35) 4200 (8) 1700 (17) Stomach cont. 0.146 <20 2200 (3) 2200 (3) 8-1 Muscle 0.222 14.9 (2) 0.68 (5) 1830 (2) 200 (7) <10 Viscera 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 Stomach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) 800 80.499 | 518 | | Viscera | 0.182 | 12.4 (5) | | 1210 (3) | 2000 (2) | 240 (9) | | | | | | Stomach cont. 0.146 <20 | 519 | | Liver | 0,205. | <10 | | 800 (32) | | 1700 (17) | | | | | | B-1 Muscle 0.222 14.9 (2) 0.68 (5) 1830 (2) 200 (7) <10 Viscera 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 Stommach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Bone 0.499 <30 110 (20) Skin 0.340 6.8 (12) | 520 | | Stomach cont. | 0.146 | <20 | | 2200 (3) | | | | | | | | Viscera 0.192 13.8 (7) 396 (1) 1400 (5) 2170 (3) 180 (18 Stommach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Bone 0.499 <30 110 (20) Skin
0.340 6.8 (12) | | 8-1 | Muscle | 0.222 | | 0.68 (5) | 1830 (2) | 200 (7) | <10 | 0.006 (42 | | | | | Stomach cont. 0.147 1280 (2) Intest. cont. 0.154 <30 1840 (1) 2800 (35) 3600 (22) Bone 0.499 <30 110 (20) Skin 0.340 6.8 (12) | 524 | | Viscera | 0.192 | | 396 (1) | 1400 (5) | 2170 (3) | 180 (18 | 3.6 (6) | | | | | Intest. cont. 0.154 <30 | 526 | | Stomach cont. | 0.147 | _ | (5) (82) | | | | 8 (32) | | | | | Bone 0.499 <30 110 (20) Skin 0.340 6.8 (12) | 527 | | Intest. cont. | 0.154 | | 840 (1) | 2800 (35) | 3600 (22) | | (21) 71 | | | | | Skin 0.340 6.8 (12) | 525 | | Bone | 0.499 | | | <30 | 110 (20) | | (3.1 | | | | | (2) 006 | 523 | | Skin | 0.340 | 6.8 (12) | | | 980 (5) | 230 (24 | | | | | Table A-12. (Continued) | | | | | | 1 | pulzky ary weignt | _ aubi | | | | | |--|--|-------------------------|--------------------------|-----------------------|-----------------------------|--------------------------------------|----------------------|-------------------|-------------------|--------------------|-------------------| | Sample Island
ID locator | id
or Tissue | Dry/wet
weight | (×10 ³) | 239+240 _{Pu} | 137 _{Cs} | 0009 | 207 ₈₁ | 238 _{Pu} | 210 _{pb} | 210 _{8 i} | 210 _{Po} | | Surgeonfish - | Surgeonfish - <u>Acanthurus</u> (cont'd | ıt'd | | | | | | | | | | | MSH 124 B-1 | Muscle | | | | | | | | 7 (20) | 70 (30) | 26 (3) | | 121 | Liver | | | | | | | | 1220 (6) | (6) 0086 | 2150 (3) | | MSG 666 | Вопе | | 4 | | | | | | 2420 (3) | | 3020 (1) | | MSH 123 8-5 | Muscle | | | | | | | | <42 (8) | 120 (20) | 208 (3) | | 120 | Liver | | | | | | | | 3550 (3) | 16000 (7) | 23800 (1) | | MSG 665 | Bone | | | | | | | | 3180 (3) | | 4260 (1) | | MSH 126 B-12 | Muscle | | | | | | | | 10 (5) | 50 (15) | 34 (3) | | MSG 661 | Bone | | | | | | | | 1590 (3) | | | | 483 | Stomach Cont. | | | | | | | | 179 (3) | | 4600 (1) | | MSG-621 B-17
615
616
Name: Goatfish | MSG-621 B-17 Muscle 615 Liver 616 Viscera (Anne: Goatfish - Mulloidichthys | 0.207
0.209
0.174 | 16.6 (2) 16 (30) 11 (17) | | 210 (5)
<300
230 (40) |) 31 (25)
900 (31)
0) 500 (20) | | | | | | | MSG 576 8-1
581 | Muscle
Viscera | 0.226 | 21.1 (4) | | 720 (6) |) 800 (4) | 4300 (4)
5200 (4) | | | | | | MSH 135 | Liver | | | | | | • | | 340 (3) | | 24100 (1) | Table A-12. (Continued) | | | | | | pCi | pCi∕kg dry weiqht ^a | hta | | | | | |--------------|-------------------|--|---------------------------------------|-----------------------|---------------------|--------------------------------|--------------------|-------|----------|-------|---------------------------------------| | Sample
10 | lsland
locator | or Tissue bry/wet | t 40 _K (x10 ³) | 239+240 _{p4} | 137 _{cs} (| 0009 | 207 _{R i} | 238,, | 210 | 016 | | | Name: G | oatfish | Name: Goatfish - Mulloidichthys (cont'd) | | | | | | n l | 7 L | 8.1.3 | 0 _{d01} 2 | | MSH 136 | 9-R | Muscle | | | | | | | | | | | MSG 801 | | Bone | | | | | , | | 4 (45) | | 700 101 | | 802 | | Bone | | | | | | | | | 1730 (8) | | MSH 136 | B-6 | Muscle | | | | | | | | | 2460 (3) | | MSG 803 | | Bone | | | | | | | 4 (45) | | e e e e e e e e e e e e e e e e e e e | | 804 | | Bone | | | ٠ | | | | | | /20 (3)
1480 (3) | | MSH 138 | 9-8 | Muscle | | | | | | | | | 4430 (3) | | MSG 805 | | Bone | | | | | | | 6 (30) | | (6) 000 | | 808 | | Bone | | | | | | | | | 3450 (3) | | MSH 130 | 8-12 | Muscle | | | | | | | | | 5160 (3) | | MSG 490 | | Liver | | | | | | | 9 (30) | | 4 | | 603 | | Bone | | | | | | | | | 600 (5) | | 488 | | Intest. cont. | | | | | | _ | 1200 (3) | | (1) 00062 | | 489 | | Intest. cont. | | | | | | | 870 (3) | | 59000 (1) | | 487 | | Intestine | | | | | | | 790 (3) | | (1) 00066 | | | | | | | | ı | | | | | (1) 00001 | a Numbers in parenthesis are the 1σ counting error expressed as percent of listed value.